Skip to main content
Log in

Prediction of Interfacial Reaction Between Cu and In During Low-Temperature Soldering

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Interfacial reaction between Cu and In has been predicted and analyzed based on computational thermodynamics and diffusion kinetics. The Cu11In9 compound phase is predicted to form first and grow dominantly at the initial stage of the reaction between Cu-rich FCC and In-rich liquid phases during low-temperature soldering. The diffusion coefficient in the Cu11In9 compound is assessed to enable a quantitative prediction of the layer growth during the soldering process. The present work enables a reasonable prediction of the interfacial reaction between Cu and In for a given temperature profile, as well as process optimization through control of intermetallic compound growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Trumble, Get the Lead Out![Lead Free Solder], IEEE Spectr., 1998, 35(5), p 55–60. https://doi.org/10.1109/6.669978

    Article  Google Scholar 

  2. S. Cheng, C.-M. Huang, and M. Pecht, A Review of Lead-Free Solders for Electronics Applications, Microelectron. Reliab., 2017, 75, p 77–95. https://doi.org/10.1016/j.microrel.2017.06.016

    Article  Google Scholar 

  3. C.C. Lee, and Y.-C. Chen, Indium-Copper Multilayer Composite Solder for Fluxless Bonding, MRS Proc., 1995, 390, p 225. https://doi.org/10.1557/PROC-390-225

    Article  Google Scholar 

  4. C.L. Yu, S.S. Wang, and T.H. Chuang, Intermetallic Compounds Formed at the Interface Between Liquid Indium and Copper Substrates, J. Electron. Mater., 2002, 31(5), p 488–493. https://doi.org/10.1007/s11664-002-0104-9

    Article  ADS  Google Scholar 

  5. P. Kumar, I. Dutta, R. Raj, M. Renavikar, and V. Wakharkar, Novel liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications, in 2008 Second International Conference on Thermal Issues in Emerging Technologies Conference (2008). https://doi.org/10.1109/THETA.2008.5167182

  6. P.G. Harris, and K.S. Chaggar, The Role of Intermetallic Compounds in Lead-Free Soldering, Solder. Surf. Mt. Technol., 1998, 10(3), p 38–52. https://doi.org/10.1108/09540919810237110

    Article  Google Scholar 

  7. P. Tu, Y. Chan, K. Hung, and J. Lai, Growth Kinetics of Intermetallic Compounds in Chip Scale Package Solder Joint, Scr. Mater., 2001, 44(2), p 317–323. https://doi.org/10.1016/s1359-6462(00)00590-x

    Article  Google Scholar 

  8. P.T. Vianco, P.F. Hlava, and A.C. Kilgo, Intermetallic Compound Layer Formation Between Copper and Hot-Dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb Coatings, J. Electron. Mater., 1994, 23(7), p 583–594. https://doi.org/10.1007/bf02653343

    Article  ADS  Google Scholar 

  9. P. Ainsworth, Soft Soldering Gold Coated Surfaces, Gold Bull., 1971, 4(3), p 47–50. https://doi.org/10.1007/bf03215142

    Article  Google Scholar 

  10. L. Bernstein, Semiconductor Joining by the Solid-Liquid-Interdiffusion (SLID) Process, J. Electrochem. Soc., 1966, 113(12), p 1282. https://doi.org/10.1149/1.2423806

    Article  ADS  Google Scholar 

  11. C.R. Kao, Microstructures Developed in Solid-Liquid Reactions: Using Cu-Sn Reaction, Ni-Bi Reaction, and Cu-In Reaction as Examples, Mater. Sci. Eng. A, 1997, 238(1), p 196–201. https://doi.org/10.1016/S0921-5093(97)00449-8

    Article  Google Scholar 

  12. S.A. Sommadossi, Investigation on diffusion soldering in Cu/In/Cu and Cu/In-48Sn/Cu systems, Ph.D. Thesis, Institute for Metal Science, Universität Stuttgart (2002).

  13. D.-G. Kim, J.-W. Yoon, C.-Y. Lee, and S.-B. Jung, Reaction Diffusion and Formation of Cu11In9 and In27Ni10 Phases in the Couple of Indium-Substrates, Mater. Trans., 2003, 44(1), p 72–77. https://doi.org/10.2320/matertrans.44.72

    Article  Google Scholar 

  14. D.-G. Kim, C.-Y. Lee, and S.-B. Jung, Interfacial Reactions and Intermetallic Compound Growth Between Indium and Copper, J. Mater. Sci. Mater. Electron., 2004, 15(2), p 95–98. https://doi.org/10.1023/B:JMSE.0000005383.95823.13

    Article  Google Scholar 

  15. Y.S. Chiu, H.Y. Yu, H.T. Hung, Y.W. Wang, and C.R. Kao, Phase Formation and Microstructure Evolution in Cu/In/Cu Joints, Microelectron. Reliab., 2019, 95, p 18–27. https://doi.org/10.1016/j.microrel.2019.02.004

    Article  Google Scholar 

  16. H.T. Hung, P.T. Lee, C.H. Tsai, and C.R. Kao, Artifact-Free Microstructures of the Cu–In Reaction by Using Cryogenic Broad Argon Beam Ion Polishing, J. Mater. Res. Technol., 2020, 9(6), p 12946–12954. https://doi.org/10.1016/j.jmrt.2020.09.045

    Article  Google Scholar 

  17. B.-J. Lee, N.M. Hwang, and H.M. Lee, Prediction of Interface Reaction Products Between Cu and Various Solder Alloys by thermodynamic Calculation, Acta Mater., 1997, 45(5), p 1867–1874. https://doi.org/10.1016/S1359-6454(96)00325-4

    Article  ADS  Google Scholar 

  18. B.-J. Lee, Prediction of Ti/Al2O3 Interface Reaction Products by Diffusion Simulation, Acta Mater., 1997, 45(10), p 3993–3999. https://doi.org/10.1016/s1359-6454(97)00108-0

    Article  ADS  Google Scholar 

  19. B.-J. Lee, Thermodynamic Analysis of Solid-State Metal/Si Interfacial Reactions, J. Mater. Res., 1999, 14(3), p 1002–1017. https://doi.org/10.1557/JMR.1999.0134

    Article  ADS  Google Scholar 

  20. K.C. Russell, Nucleation in solids, in Phase transformations. H.I. Aaronson, C. Laird, and K.R. Kinsman, Eds., ASM, Metals Park, 1970, p 219–268

    Google Scholar 

  21. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilibr., 2000, 21(3), p 269. https://doi.org/10.1361/105497100770340057

    Article  Google Scholar 

  22. R. Kainuma, and K. Ishida, Design of Pb-Free Solders in Electronic Packaging by Computational Thermodynamics and Kinetics, J. Mater. Metall., 2005, 4(2), p 122–125.

    Google Scholar 

  23. S. Cao, S. Huang, M. Chu, Q. Yue, and J. Shen, Thermodynamic Optimization of Cu–In System, Chin. J. Rare Metals, 2007, 31, p 807. https://doi.org/10.3969/j.issn.0258-7076.2007.06.018

    Article  Google Scholar 

  24. C.P. Muzzillo, and T. Anderson, Thermodynamic Assessment of Ag–Cu–In, J. Mater. Sci., 2018, 53(9), p 6893–6910. https://doi.org/10.1007/s10853-018-1999-8

    Article  ADS  Google Scholar 

  25. U. Scheuermann and P. Wiedl, Low Temperature Joining Technology-a High Reliability Alternative to Solder Contacts, in Workshop on Metal Ceramic Composites for Functional Applications, Vienna (1997).

  26. Z. Mei, F. Hua, J. Glazer, and C.C. Key, Low temperature soldering, in Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium Proceedings 1997 IEMT Symposium. IEEE (1997). https://doi.org/10.1109/IEMT.1997.626966

  27. X.-G. Lu, M. Selleby, and B. Sundman, Assessments of Molar Volume and Thermal Expansion for Selected Bcc, Fcc and Hcp Metallic Elements, Calphad, 2005, 29(1), p 68–89. https://doi.org/10.1016/j.calphad.2005.05.001

    Article  Google Scholar 

  28. G. Ghosh, Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater., 2001, 49(14), p 2609–2624. https://doi.org/10.1016/S1359-6454(01)00187-2

    Article  ADS  Google Scholar 

  29. E. Richard, R. David, and L. George, AlP Physics Desk Reference, 3/e. Springer-Verlag, New York, 2003.

    Google Scholar 

  30. C.N. Singman, Atomic Volume and Allotropy of the Elements, J. Chem. Educ., 1984, 61(2), p 137. https://doi.org/10.1021/ed061p137

    Article  Google Scholar 

  31. R.E. Eckert, and H. Drickamer, Diffusion in Indium Near the Melting Point, J. Chem. Phys., 1952, 20(1), p 13–17. https://doi.org/10.1063/1.1700156

    Article  ADS  Google Scholar 

  32. A.R. Hansen, M.A. Kaminski, and C.A. Eckert, Molar and Excess Volumes of Liquid Indium-Antimony, Magnesium-Antimony, and Lead-Antimony Alloys, J. Chem. Eng. Data, 1990, 35(2), p 153–156. https://doi.org/10.1021/je00060a017

    Article  Google Scholar 

  33. A. Meyer, Self-Diffusion in Liquid Copper as Seen by Quasielastic Neutron Scattering, Phys. Rev. B, 2010, 81(1), 012102. https://doi.org/10.1103/PhysRevB.81.012102

    Article  ADS  Google Scholar 

  34. W.-M. Chen, L.-J. Zhang, Y. Du, and B.-Y. Huang, Diffusivities and Atomic Mobilities of Sn-Ag and Sn-In Melts, J. Electron. Mater., 2014, 43(4), p 1131–1143. https://doi.org/10.1007/s11664-014-3041-5

    Article  ADS  Google Scholar 

  35. C.J. Müller, and S. Lidin, Cu11In9—Revised Crystal Structure and its (Physicochemical) Relation to Cu10In7, J. Alloys Compd., 2015, 638, p 393–397. https://doi.org/10.1016/j.jallcom.2015.03.106

    Article  Google Scholar 

  36. Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices Syfer Surface Mount Capacitor Test Results, Joint Industry Standard (2008).

  37. J.Z. Liu, A. Van De Walle, G. Ghosh, and M. Asta, Structure, Energetics, and Mechanical Stability of Fe-Cu Bcc Alloys from First-Principles Calculations, Phys. Rev. B, 2005, 72(14), 144109. https://doi.org/10.1103/PhysRevB.72.144109

    Article  ADS  Google Scholar 

  38. H.-C. Cheng, C.-F. Yu, and W.-H. Chen, Physical, Mechanical, Thermodynamic and Electronic Characterization of Cu11In9 Crystal using first-Principles Density Functional Theory Calculation, Comput. Mater. Sci., 2014, 81, p 146–157. https://doi.org/10.1016/j.commatsci.2013.07.039

    Article  Google Scholar 

  39. J. Haines, J. Leger, and G. Bocquillon, Synthesis and Design of Superhard Materials, Ann. Rev. Mater. Res., 2001, 31, p 1. https://doi.org/10.1146/annurev.matsci.31.1.1

    Article  ADS  Google Scholar 

  40. Z. Ding, S. Zhou, and Y. Zhao, Hardness and Fracture Toughness of Brittle Materials: A Density Functional Theory Study, Phys. Rev. B, 2004, 70(18), 184117. https://doi.org/10.1103/PhysRevB.70.184117

    Article  ADS  Google Scholar 

  41. D. Cho and M. Perez, Brittleness revisited, in Geoconvention 2014 Conference, Can. Soc. of Pet. Eng. (2014).

Download references

Acknowledgments

This research has been financially supported by Samsung Electronics Co. Ltd., Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of former JPED Editor-in-Chief John Morral. The special issue was organized by Prof. Yongho Sohn, University of Central Florida; Prof. Ji-Cheng Zhao, University of Maryland; Dr. Carelyn Campbell, National Institute of Standards and Technology; and Dr. Ursula Kattner, National Institute of Standards and Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SH., Chu, K. & Lee, BJ. Prediction of Interfacial Reaction Between Cu and In During Low-Temperature Soldering. J. Phase Equilib. Diffus. 43, 876–882 (2022). https://doi.org/10.1007/s11669-022-01008-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-01008-w

Keywords

Navigation