Skip to main content
Log in

Atomic Composition and Structure Evolution of the Solid-Liquid Boundary in Al-Si System During Interfacial Diffusion and Contact Melting

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The process of diffusion mixing at the aluminum-silicon interface in the case of two, four, seven, and ten atomic aluminum monolayers on the silicon (111) surface has been studied. The investigations were performed by the molecular dynamics simulations method using Large-scale Atomic/Molecular Massively Parallel Simulator package. Concentration and density profiles at the phase interface were analyzed to investigate the kinetics of mixing. The formation of a transient diffusion layer at the boundary of the liquid and crystalline phases is established. The melting of the phase interface was explained in the framework of the theory of contact melting. It is shown that diffusion mixing, which precedes contact melting, occurs at the level of atomic blocks (clusters), i.e. we can talk about the island nature of contact melting at the initial stage. The diffusion process was analyzed based on the theory of free volume in liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. C.T. Earnest, J.H. Bejanin, T.G. McConkey, E.A. Peters, A. Korinek, H. Yuan, and M. Mariantoni, Substrate Surface Engineering for High-Quality Silicon/Aluminum Superconducting Resonators, Supercond. Sci. Technol., 2018, 31, p 125013. https://doi.org/10.1088/1361-6668/aae548

    Article  ADS  Google Scholar 

  2. A. Megrant, C. Neill, R. Barends et al., Planar Superconducting Resonators with Internal Quality Factors Above One Million, Appl. Phys. Lett., 2012, 100, 113510. https://doi.org/10.1063/1.3693409

    Article  ADS  Google Scholar 

  3. C.J.K. Richardson, N.P. Siwak, J. Hackley, Z.K. Keane, J.E. Robinson, B. Arey, I. Arslan, and B.S. Palmer, Fabrication Artifacts and Parallel Loss Channels in Metamorphic Epitaxial Aluminum Superconducting Resonators, Supercond. Sci. Technol., 2016, 29, p 064003. https://doi.org/10.1088/0953-2048/29/6/064003

    Article  ADS  Google Scholar 

  4. D. Niepce et al., Geometric Scaling of Two-Level-System Loss in Superconducting Resonators, Supercond. Sci. Technol., 2020, 33, p 025013. https://doi.org/10.1088/1361-6668/ab6179

    Article  ADS  Google Scholar 

  5. B. Sopori, V. Mehta, P. Rupnowski, H. Moutinho, A. Shaikh, C. Khadilkar, M. Bennett, and D. Carlson, Studies on Backside Al-Contact Formation in Si Solar Cells: Fundamental Mechanisms, MRS Online Proceedings Library (OPL), 1123: Symposium P – Photovoltaic Materials and Manufacturing Issues 2008 p. 07. https://doi.org/10.1557/PROC-1123-1123-P07-11

  6. V.A. Popovich, M. Janssen, I.M. Richardson, T. van Amstel, and I.J. Bennett, Microstructure and Mechanical Properties of Aluminum Back Contact Layers, Solar Energy Mater. Solar Cells, 2011, 95(1), p 93. https://doi.org/10.1016/j.solmat.2010.04.037

    Article  Google Scholar 

  7. E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, Silicon Diffusion in Aluminum for Rear Passivated Solar Cells, Appl. Phys. Lett., 2011, 98, 153508. https://doi.org/10.1063/1.3579541

    Article  ADS  Google Scholar 

  8. D. Alonso-Álvareza, A. Augusto, P. Pearce, L. Ferre Llin, A. Mellor, S. Bowden, D.J. Paul, and N. Ekins-Daukes, Thermal Emissivity of Silicon Heterojunction Solar Cells, Solar Energy Mater. Solar Cells, 2019, 201, p 110051. https://doi.org/10.1016/j.solmat.2019.110051

    Article  Google Scholar 

  9. C. Park, S. Chung, N. Balaji, S. Ahn, S. Lee, J. Par, and J. Yi, Analysis of Contact Reaction Phenomenon Between Aluminum-Silver and p+ Diffused Layer for n-Type c-Si, Solar Cell Appl. Energies, 2020, 13, p 4537. https://doi.org/10.3390/en13174537

    Article  Google Scholar 

  10. X. Huang, X. Dong, and L. Liua, Peijie Li Liquid Structure of Al-Si Alloy: A Molecular Dynamics Simulation, J. Non-Cryst. Solids, 2019, 503–504, p 182. https://doi.org/10.1016/j.jnoncrysol.2018.09.047

    Article  ADS  Google Scholar 

  11. J. Qin, S. Pan, Y. Qi, and Gu. Tingkun, The Structure and Thermodynamic Properties of Liquid Al–Si Alloys by ab Initio Molecular Dynamics Simulation, J. Non-Cryst. Solids, 2016, 433, p 31. https://doi.org/10.1016/j.jnoncrysol.2015.11.032

    Article  ADS  Google Scholar 

  12. S. Wang, C.Z. Wang, F.C. Chuang, J.R. Morris, and K.M. Ho, Ab initio Molecular Dynamics Simulation of Liquid Al88Si12 alloys, J. Chem. Phys., 2005, 122, p 034508. https://doi.org/10.1063/1.1833355

    Article  ADS  Google Scholar 

  13. M. Ji, and X.G. Gong, Ab Initio Molecular Dynamics Simulation on Temperature-Dependent Properties of Al–Si Liquid Alloy, J. Phys. Condens. Matter, 2004, 16, p 2507. https://doi.org/10.1088/0953-8984/16/15/004

    Article  ADS  Google Scholar 

  14. V.R. Manga, and D.R. Poirier, Ab Initio Molecular Dynamics Simulation of Self-Diffusion in Al–Si Binary Melts, Model. Simul. Mater. Sci. Eng., 2018, 26, p 065006. https://doi.org/10.1088/1361-651X/aacdbc

    Article  ADS  Google Scholar 

  15. Z. Zhang, and H.M. Urbassek, Dislocations Penetrating an Al/Si Interface, AIP Adv., 2017, 7, p 125119. https://doi.org/10.1063/1.5008886

    Article  ADS  Google Scholar 

  16. P. Saidi, and J.J. Hoyt, Atomistic Simulation of the Step Mobility at the Al–Si(111) Crystal–Melt Interface Using Molecular Dynamics, Comput. Mater. Sci., 2016, 111, p 137. https://doi.org/10.1016/j.commatsci.2015.09.040

    Article  Google Scholar 

  17. S. Liu, X. Zhou, W. Weikang, X. Zhu, Y. Duan, H. Li, and X. Wang, Molecular Dynamics Study on the Nucleation of Al–Si Melts on Sheet Substrates at the Nanoscale, Nanoscale, 2016, 8, p 4520. https://doi.org/10.1039/C5NR06097D

    Article  ADS  Google Scholar 

  18. https://lammps.sandia.gov/

  19. B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes, Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys, Phys. Rev. B, 2012, 85(24), p 245102. https://doi.org/10.1103/PhysRevB.85.245102

    Article  ADS  Google Scholar 

  20. D.C. Rapaport The Art of Molecular Dynamics Simulation, (Cambridge University Press, Cambridge, 1995), https://doi.org/10.1017/CBO9780511816581

  21. V. Plechystyy, I. Shtablavyi, S. Winczewski, K. Rybacki, S. Mudry, and J. Rybicki, Structure of the Interlayer Between Au Thin Film and Si-Substrate: Molecular Dynamics simulations, Mater. Res. Express, 2020, 7, 026553. https://doi.org/10.1088/2053-1591/ab5e76

    Article  ADS  Google Scholar 

  22. V. Plechystyy, I. Shtablavyi, S. Winczewski, K. Rybacki, B. Tsizh, S. Mudry, and J. Rybicki, Effect of Heat Treatment on the Diffusion Intermixing and Structure of the Cu Thin Film on Si (111) Substrate: A Molecular Dynamics Simulation Study, Mol. Simul., 2021, 47(17), p 1381. https://doi.org/10.1080/08927022.2021.1974433

    Article  Google Scholar 

  23. T.B. Massalski, Binary alloy phase diagram. ASM, Metals Park, OH, 1990.

    Google Scholar 

  24. G. Celotti, D. Nobili, and P. Ostoja, Lattice Parameter Study of Silicon Uniformly Doped with Boron and Phosphorus, J. Mater. Sci., 1974, 9, p 821. https://doi.org/10.1007/BF00761802

    Article  ADS  Google Scholar 

  25. S.H. Kellington, D. Loveridge, and J.M. Titman, The Lattice Parameters of Some Alloys of Lithium, J. Phys. D Appl. Phys., 1969, 2, p 1162. https://doi.org/10.1088/0022-3727/2/8/415

    Article  ADS  Google Scholar 

  26. Y. Waseda, The Structure of Non Crystalline Materials. McGraw-Hill, New York, 1980.

    Google Scholar 

  27. I. Shtablavyi, S. Mudry, V. Mykhaylyuk, and J. Rybicki, The Structre of Al–Cu and Al–Si Eutectic Melts, J. Non-Cryst. Solids, 2008, 354, p 4469. https://doi.org/10.1016/j.jnoncrysol.2008.06.071

    Article  ADS  Google Scholar 

  28. S. Mudry, A. Korolyshyn, and I. Shtablavyi, The Structure Changes in Al0,88Si0,12 Eutectic Melt upon Addition of Ni, J. Phys. Conf. Series, 2008, 98, p 012016. https://doi.org/10.1088/1742-6596/98/1/012016

    Article  Google Scholar 

  29. A.A. Akhkubekov, Analysis of the Process of Onset and Growth of a Liquid Phase in Contact of Dissimilar Crystals, J. Eng. Phys. Thermophys., 2000, 73(4), p 863. https://doi.org/10.1007/s10891-000-0105-6

    Article  Google Scholar 

  30. M.H. Cohen, and D. Turnbull, Molecular Transport in Liquids and Glasses, J. Chem. Phys., 1959, 31(5), p 1164. https://doi.org/10.1063/1.1730566

    Article  ADS  Google Scholar 

  31. R. Simha, and G. Carri, Free Volume, Hole Theory and Thermal Properties, J. Polym. Sci. Part B Polym. Physics, 1994, 32, p 2645. https://doi.org/10.1002/polb.1994.090321610

    Article  ADS  Google Scholar 

  32. G. Kaptay, A New Theoretical Equation for Temperature Dependent Self-Diffusion Coefficients of Pure Liquid Metals, Int. J. Mat. Res., 2008, 99, p 14. https://doi.org/10.3139/146.101600

    Article  Google Scholar 

  33. W. Chen, L. Zhang, Du. Yong, and B. Huang, Viscosity and Diffusivity in Melts: from Unary to Multicomponent Systems, Phil. Mag., 2014, 94(14), p 1552. https://doi.org/10.1080/14786435.2014.890755

    Article  ADS  Google Scholar 

  34. E.T. Turkdogan, Activation Enthalpy of Self-Diffusion in Pure Metals Interpreted as a Measure of their Interatomic Force Constant, Can. Metall. Q., 2002, 41(4), p 441. https://doi.org/10.1179/cmq.2002.41.4.441

    Article  Google Scholar 

  35. E.T. Turkdogan, Rationale on the Parameters of Diffusion in Solid and Liquid Metals, Molten Halides and Slags, Can. Metall. Q., 2003, 42(1), p 71. https://doi.org/10.1179/cmq.2003.42.1.71

    Article  Google Scholar 

  36. G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaits, Journal für die Reine und Angewandte Mathematik, 1908, 133, p 97. https://doi.org/10.1515/crll.1908.133.97

    Article  MATH  Google Scholar 

  37. N.N. Medvedev, V.P. Voloshin, V.A. Luchnikov, and M.L. Gavrilova, An Algorithm for Three-Dimensional Voronoi S-Network, J. Comput. Chem., 2006, 27, p 1676. https://doi.org/10.1002/jcc.20484

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the TASK Academic Computer Centre (Gdansk, Poland) for providing the computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor Shtablavyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plechystyy, V., Shtablavyi, I., Tsizh, B. et al. Atomic Composition and Structure Evolution of the Solid-Liquid Boundary in Al-Si System During Interfacial Diffusion and Contact Melting. J. Phase Equilib. Diffus. 43, 256–265 (2022). https://doi.org/10.1007/s11669-022-00955-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00955-8

Keywords

Navigation