Skip to main content
Log in

Experimental Investigation of Phase Equilibria in the Cu–Cr–Ti System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

To provide a basic guide for the design of Cu–Cr-based alloys, phase equilibrium relations in the Cu–Cr–Ti system have been studied using diffusion triples and typical equilibrated alloys. Based on the results from electron-probe microscopy analysis and x-ray diffraction, isothermal sections of the Cu–Cr–Ti ternary system at 1073 and 973 K were constructed, wherein 9 and 11 three-phase equilibria were determined, respectively. A ternary phase with an approximate composition of (Cu, Cr)4Ti3 was detected and named as τ1. The binary Cu4Ti3 phase does not connect with τ1 in the ternary region. Solid solution phases (Cu, Cr)3Ti2 and τ1 were identified and confirmed in both diffusion triple and alloy samples. The solubility of Cr in Cu3Ti2 extends to 12 at.% at both 1073 and 973 K. (Cu, Cr)3Ti2 and Cu3Ti2 form a continuous solid solution at 1073 K while do not exist as one stable phase at 973 K. In addition, two two-phase regions of Cu4Ti + (Cu, Cr)3Ti2 and Cu4Ti3 + (Cu, Cr)3Ti2 transform to the three-phase regions of Cu4Ti + Cu4Ti3 + (Cu, Cr)3Ti2 as the temperature decreases from 1073 to 973 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.V. Dobatkin, J. Gubicza, D.V. Shangina, N.R. Bochvar, and N.Y. Tabachkova, High Strength and Good Electrical Conductivity in Cu–Cr Alloys Processed by Severe Plastic Deformation, Mater. Lett., 2015, 153, p 5–9.

    Article  Google Scholar 

  2. Y.H. Chen, S.B. Ren, Y. Zhao, and X.H. Qu, Microstructure and Properties of CuCr Alloy Manufactured by Selective Laser Melting, J. Alloys Compd., 2019, 786, p 189–197.

    Article  Google Scholar 

  3. J.H. You, Copper Matrix Composites as Heat Sink Materials for Water-Cooled Divertor Targe, Nucl. Mater. Energy, 2015, 5, p 7–18.

    Article  Google Scholar 

  4. Q. Liu, X. Zhang, Y. Ge, J. Wang, and J.Z. Cui, Effect of Processing and Heat Treatment on Behavior of Cu–Cr–Zr Alloys to Railway Contact Wire, Metall. Mater. Trans. A, 2006, 37, p 3244–3238.

    Google Scholar 

  5. S.X. Xiu, R. Yang, J. Xue, J.X. Wang, and J.Y. Wang, Microstructure and Properties of CuCr Contact Materials with Different Cr Content, Trans. Nonferrous Met. Soc. China, 2011, 21, p s389–s393.

    Article  Google Scholar 

  6. H. Okamoto, Cr–Cu (Chromium–Copper), J. Phase Equilib., 2001, 22, p 691–692.

    Article  Google Scholar 

  7. U. Holzwarth, and H. Stamm, The Precipitation Behaviour of ITER-grade Cu–Cr–Zr Alloy After Simulating the Therma Cycle of Hot Isostatic Pressing, J. Nucl. Mater., 2000, 279, p 31–45.

    Article  ADS  Google Scholar 

  8. A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V.I. Kopylov, Structure and Properties of Ultra-Fine Grain Cu–Cr–Zr Alloy Produced by Equal-Channel Angular Pressing, Acta Mater., 2002, 50, p 1639–1651.

    Article  ADS  Google Scholar 

  9. J.B. Zhang, Y. Liu, W. Cai, and H. Wang, Morphology of Precipitates in Cu–Cr–Ti Alloys: Spherical or Cubic?, J. Electron. Mater., 2016, 45, p 4726–4729.

    Article  ADS  Google Scholar 

  10. P. Zhang, J. Jie, Y. Gao, H. Li, T.M. Wang, and T.J. Li, Influence of Cold Deformation and Ti Element on the Microstructure and Properties of Cu–Cr System Alloys, J. Mater. Res., 2015, 30(13), p 2073–2080.

    Article  ADS  Google Scholar 

  11. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Precipitation Hardening of Cu–Ti–Cr Alloys, Mater. Sci. Eng. A, 2004, 371(1–2), p 291–305.

    Article  Google Scholar 

  12. D.J. Chakrabarti, and D.E. Laughlin, The Cr–Cu (Chromium–Copper) System, Bull. Alloy Phase Diagr., 1984, 5(1), p 59–68.

    Article  Google Scholar 

  13. K.J. Zeng, and M. Hämäläinen, Thermodynamic Analysis of Stable and Metastable Equilibria in the Cu–Cr System, Calphad, 1995, 19, p 93–104.

    Article  Google Scholar 

  14. K.T. Jacob, S. Priya, and Y. Waseda, A thermodynamic Study of Liquid Cu–Cr Alloys and Metastable Liquid Immiscibility, Z. Metallkd., 2000, 91, p 594–600.

    Google Scholar 

  15. M.P. Leonov, N.R. Bochvar, and V.G. Ivanchenko, Chromium–Copper Phase Diagram, Dokl. Akad. Nauk SSSR, 1986, 290, p 888–890. , in Russian

    Google Scholar 

  16. Z.M. Zhou, J. Gao, F. Li, and Y.P. Wang, Experimental Determination and Thermodynamic Modeling of Phase Equilibria in the Cu–Cr System, J. Mater. Sci., 2011, 46(21), p 7039–7045.

    Article  ADS  Google Scholar 

  17. S.L. Cui, and I.-H. Jung, Thermodynamic Modeling of the Cu–Fe–Cr and Cu–Fe–Mn Systems, Calphad, 2017, 56, p 241–259.

    Article  Google Scholar 

  18. Y.L. Liu, P. Zhou, S.H. Liu, C. Zhang, Y. Du, and J. Wang, Experimental Investigation and Thermodynamic Description of the Cu–Cr–Zr System, Calphad, 2017, 59, p 1–11.

    Article  Google Scholar 

  19. J.L. Murray, The Cu–Ti (Copper–Titanium) System, Bull. Alloys Phase Diag., 1983, 4(1), p 81–95.

    Article  Google Scholar 

  20. L. Kaufman, Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems-VI, Calphad, 1979, 3(1), p 45–76.

    Article  Google Scholar 

  21. N. Saunders, Phase Diagram Calculations for Eight Glass Forming Alloy Systems, Calphad, 1985, 9(4), p 297–309.

    Article  MathSciNet  Google Scholar 

  22. K.C.H. Kumar, I. Ansara, P. Wollants, and L. Delaey, Thermodynamic Optimisation of the Cu–Ti System, Z. Metallkd., 1996, 87, p 666–672.

    Google Scholar 

  23. C. Colinet, A. Pasturel, and K. Buschow, Enthalpies of Formation of Ti–Cu Intermetallic and Amorphous Phases, J. Alloys. Compd., 1997, 247, p 15–19.

    Article  Google Scholar 

  24. J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, P.J. Uggowitzer, and J.F. Löffler, Experimental Investigation and Thermodynamic Assessment of the Cu–Sn–Ti Ternary System, Calphad, 2011, 35(1), p 82–94.

    Article  Google Scholar 

  25. J.L. Murray, The Cr–Ti (Chromium–Titanium) System, Bull. Alloys Phase Diagr., 1981, 2(2), p 174–181.

    Article  Google Scholar 

  26. S. Gupta, and K. Gupta, Phase Equilibria at the High Mn End of the Mn–Ti–V and Mn–Ti–Cr Systems, Trans. Indian Inst. Met, 1976, 29, p 36–41.

    Google Scholar 

  27. R.H. Ericksen, R. Taggart, and D.H. Polonis, The Martensite Transformation in Ti–Cr Binary Alloys, Acta Metall., 1969, 17(5), p 553–564.

    Article  Google Scholar 

  28. F.B. Cuff, N.J. Grant, and C.F. Floe, Titanium-Chromium Phase Diagram, JOM, 1952, 4(8), p 848–853.

    Article  Google Scholar 

  29. F. Stein, M. Palm, and G. Sauthoff, Structure and Stability of Laves Phases Part II—Structure Type Variations in Binary and Ternary Systems, Intermetallics, 2005, 13(10), p 1056–1074.

    Article  Google Scholar 

  30. J. Pavlů, J. Vřešt’ál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr–Hf and Cr–Ti Systems: Reassessment Using First-Principles Results, Calphad, 2010, 34(2), p 215–221.

    Article  Google Scholar 

  31. P. Villars, Pearson’s Handbook of Crystallograhic Data for Intermetallic Phases. ASM International, 1997.

  32. D.M. Cupid, M.J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H.J. Seifert, Thermodynamic Assessment of the Cr–Ti and First Assessment of the Al–Cr–Ti Systems, Intermetallics, 2011, 19(8), p 1222–1235.

    Article  Google Scholar 

  33. J.C. Zhao, Reliability of the Diffusion-Multiple Approach for Phase Diagram Mapping, J. Mater. Sci., 2004, 39, p 3913–3925.

    Article  ADS  Google Scholar 

  34. Y. Zhong, H.S. Liu, G.M. Cai, and Z.P. Jin, Experimental Study on Phase Equilibria in Ti–Cu–Pt System, J. Phase Equilib. Diffus., 2017, 38(4), p 466–476.

    Article  Google Scholar 

  35. G.N. Hermana, H.M. Hsiao, P.C. Kuo, P.K. Liaw, Y.C. Li, S. Iikubo, and Y.W. Yen, Phase Equilibria of the Cu–Zr–Ti Ternary System at 703 °C And the Thermodynamic Assessment and Metallic Glass Region Prediction of the Cu–Zr–Ti Ternary System, J. Non-Cryst. Solids, 2021, 551, p 120387.

    Article  Google Scholar 

  36. L.L. Zhu, C.D. Wei, L. Jiang, Z.P. Jin, and J.C. Zhao, Experimental Determination of the Phase Diagrams of the Co–Ni–X (X = W, Mo, Nb, Ta) Ternary Systems Using Diffusion Multiples, Intermetallics, 2018, 93, p 20–29.

    Article  Google Scholar 

  37. P.G. Qin, H. Wang, L.G. Zhang, H.S. Liu, and Z.P. Jin, The Isothermal Section of the Cu–Ti–Zr System at 1023 K Measured with Diffusion-Triple Approach, Mater. Sci. Eng. A, 2008, 476, p 83–88.

    Article  Google Scholar 

  38. G.N. Hermana, H.M. Hsiao, P.C. Kuo, P.K. Liaw, Y.C. Li, S. Likubo, and Y.W. Yen, Phase Equilibria of the Cu–Zr–Ti Ternary System at 703 °C and the Thermodynamic Assessment and Metallic Glass Region Prediction of the Cu–Zr–Ti Ternary System, J. Non-Cryst. Solids, 2021, 551, p 120387.

    Article  Google Scholar 

  39. Y.M. Wang, H.S. Liu, Q. Chen, F. Zheng, and Z.P. Jin, The Isothermal Section at 923 K of the Co–Cu–Ti Ternary System Measured by Using Diffusion Triple, J. Alloy Compd., 2007, 439, p p196-200.

    Article  Google Scholar 

  40. J.L. Liu, X.M. Huang, G.H. Li, G.M. Cai, H.S. Liu, and Z.P. Jin, Experimental Investigation on Phase Equilibria of Cu–Ti–Hf System and Performance of Cu(Ti, Hf)2 Phase, J. Mater. Sci., 2018, 53(10), p 7809–7821.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the National MCF Energy R&D Program of China (No. 2018YFE0306100) and the National Key Research and Development Plan (No. 2016YFB0701301). Lilong Zhu acknowledges the financial support from the Taishan Scholars Program of Shandong Province (No. tsqn201909081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.H., Huang, X.M., Zhu, L.L. et al. Experimental Investigation of Phase Equilibria in the Cu–Cr–Ti System. J. Phase Equilib. Diffus. 42, 389–402 (2021). https://doi.org/10.1007/s11669-021-00892-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00892-y

Keywords

Navigation