Skip to main content
Log in

Phase Stability and Microhardness of the AlxCr2-xCoFeNi High-Entropy Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase constituent, phase stability, microstructure, and hardness of seven arc melted AlxCr2-xCoFeNi (x = 0.25~1.75) high-entropy alloys, in as-cast and 800 or 1000°C annealed states, were investigated using XRD, SEM, EDS and DSC. With the increase of Al content, the FCC phase disappeared in the as-cast AlxCr2-xCoFeNi alloys. As for the as-cast alloys with 25~30 at.%Al, the composition difference between the former and the later solidified B2 phase can be clearly identified. As for the AlxCr2-xCoFeNi (x = 0.25~1.0) alloys, the σ phase formed at above 576°C and decomposed at 912~1033°C. Fine FCC, BCC, B2 and σ phases existed in the 800°C annealed AlxCr2-xCoFeNi (x = 0.25~1.25) alloys. And the hardness became higher than that of the as-cast alloys. When the Al content was 25 at.%, the hardness of the alloy decreased significantly with the disappearance of the σ phase. After annealing at 1000°C, the σ phase only existed in the Al0.25Cr1.75CoFeNi and Al0.5Cr1.5CoFeNi alloys. With the increase of Al content, the alloy hardness also increased. Prolonging the annealing time, from 120 h to 480 h, can decrease the Al content in precipitated FCC or BCC phases and coarsen the phase grains, which will decrease of the alloy hardness. In all, the change of hardness after annealing depends on the contributions of formation of the harder σ phase or the softer FCC/BCC phases and the grain size of the precipitates. The results will help design the composition and treatment process of Al-Co-Cr-Fe-Ni high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsaua, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  Google Scholar 

  3. C.C. Tung, J.W. Yeh, and T.T. Shun, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 2007, 61(1), p 1–5

    Article  Google Scholar 

  4. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 2011, 19(5), p 698–706

    Article  Google Scholar 

  5. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A, 2008, 491(1), p 154–158

    Article  Google Scholar 

  6. H.F. Sheng, M. Gong, and L.M. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Mater. Sci. Eng. A, 2013, 567, p 14–20

    Article  Google Scholar 

  7. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 2012, 26, p 44–51

    Article  Google Scholar 

  8. C.C. Yen, H.N. Lu, M.H. Tsai, B.W. Wu, Y.C. Lo, C.C. Wang, S.Y. Chang, and S.K. Yen, Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution, Corros. Sci., 2019, 157, p 462–471

    Article  ADS  Google Scholar 

  9. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 2011, 59(16), p 6308–6317

    Article  ADS  Google Scholar 

  10. C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, J. Alloys Compd., 2010, 504, p S515–S518

    Article  Google Scholar 

  11. A. Munitz, S. Salhov, S. Hayun, and N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloys Compd., 2016, 683, p 221–230

    Article  Google Scholar 

  12. A. Sourav, S. Yebaji, and S. Thangaraju, Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys, Mater. Sci. Eng. A, 2020, 793, p 139877

    Article  Google Scholar 

  13. M.M. Garlapati, M. Vaidya, A. Karati, S. Mishra, R. Bhattacharya, and B.S. Murty, Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures, Adv. Powder Technol., 2020, 31(5), p 1985–1993

    Article  Google Scholar 

  14. L. Huang, Y. Sun, A. Amar, C. Wu, X. Liu, G. Le, X. Wang, J. Wu, K. Li, C. Jiang, and J. Li, Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition, Vacuum, 2021, 183, p 109875

    Article  ADS  Google Scholar 

  15. Y. Shi, J. Mo, F.-Y. Zhang, B. Yang, P.K. Liaw, and Y. Zhao, In-situ visualization of corrosion behavior of AlxCoCrFeNi high-entropy alloys during electrochemical polarization, J. Alloys Compd., 2020, 844, p 156014

    Article  Google Scholar 

  16. Y.Y.-C. Yang, C. Liu, C.-Y. Lin, and Z. Xia, Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys, Scripta Mater., 2020, 178, p 181–186

    Article  Google Scholar 

  17. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures, Wear, 2019, 428–429, p 32–44

    Article  Google Scholar 

  18. G.J. Zhang, Q.W. Tian, K.X. Yin, S.Q. Niu, M.H. Wu, W.W. Wang, Y.N. Wang, and J.C. Huang, Effect of Fe on microstructure and properties of AlCoCrFexNi (x = 1.5, 2.5) high entropy alloy coatings prepared by laser cladding, Intermetallics, 2020, 119, p 106722

    Article  Google Scholar 

  19. M. Kang, K.R. Lim, J.W. Won, and Y.S. Na, Effect of Co content on the mechanical properties of A2 and B2 phases in AlCoxCrFeNi high-entropy alloys, J. Alloys Compd., 2018, 769, p 808–812

    Article  Google Scholar 

  20. G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100-xCox high-entropy alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205

    Article  Google Scholar 

  21. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A, 2015, 647, p 229–240

    Article  Google Scholar 

  22. G. Muthupandi, K.R. Lim, Y.-S. Na, J. Park, D. Lee, H. Kim, S. Park, and Y.S. Choi, Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy, Mater. Sci. Eng. A, 2017, 696, p 146–154

    Article  Google Scholar 

  23. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloys Compd., 2017, 728, p 1235–1238

    Article  Google Scholar 

  24. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, and P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des., 2016, 109, p 425–433

    Article  Google Scholar 

  25. Y. Sun, C. Wu, H. Peng, Y. Liu, J. Wang, and X. Su, Phase constituent and microhardness of as-cast and long-time annealed AlxCo2-xCrFeNi multicomponent alloys, J. Phase Equilibria Diffus., 2019, 40(5), p 706–714

    Article  Google Scholar 

  26. W. Xiong, C.J. Wu, C. Zhou, Y. Liu, and X.P. Su, Effect of annealing temperature on microstructure and hardness of the Al-Co-Cr-Fe-Ni high entropy alloys with eutectic structure and single phase, J. Changzhou Univ. Nat. Sci. Edit., 2021, 33(3), p 1–8

    Google Scholar 

  27. Z.G. Zhu, K.H. Ma, X. Yang, and C.H. Shek, Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100–x)Cox high entropy alloys, J. Alloys Compd., 2017, 695, p 2945–2950

    Article  Google Scholar 

  28. E. Strumza, and S. Hayun, Comprehensive study of phase transitions in equiatomic AlCoCrFeNi high-entropy alloy, J. Alloys Compd., 2021, 856, p 158220

    Article  Google Scholar 

  29. Y. Zhao, Y. Yang, C.-H. Lee, and W. Xiong, Investigation on phase stability of AlxCo0.2Cr0.2Ni0.2Ti0.4-x high entropy alloys, J. Phase Equ. Diffus., 2018, 39(5), p 610–622

    Article  Google Scholar 

  30. M. Tian, C. Wu, Y. Liu, H. Peng, J. Wang, and X. Su, Phase stability and microhardness of CoCrFeMnxNi2-x high entropy alloys, J. Alloys Compd., 2019, 811, p 152025

    Article  Google Scholar 

  31. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 2016, 112, p 40–52

    Article  ADS  Google Scholar 

  32. L. Zhang, D. Zhou, and B. Li, Anomalous microstructure and excellent mechanical properties of Ni35Al21.67Cr21.67Fe21.67 high-entropy alloy with BCC and B2 structure, Mater. Lett., 2018, 216, p 252–255

    Article  Google Scholar 

  33. S. Guo, C. Ng, and C.T. Liu, Sunflower-like Solidification Microstructure in a Near-eutectic High-entropy Alloy, Mater. Res. Lett., 2013, 1(4), p 228–232

    Article  Google Scholar 

  34. https://computherm.com/panhea.

  35. Y.C. Liu, S.Y. Yen, S.H. Chu, S.K. Lin, and M.H. Tsai, Mechanical and thermodynamic data-driven design of Al-Co-Cr-Fe-Ni multi-principal element alloys, Mater. Today Commun., 2021, 26, p 102096

    Article  Google Scholar 

  36. K. Osintsev, S. Konovalov, V. Gromov, I. Panchenko, and X. Chen, Phase composition prediction of Al-Co-Cr-Fe-Ni high entropy alloy system based on thermodynamic and electronic properties calculations[J], Mater. Today: Proc., 2021. https://doi.org/10.1016/j.matpr.2021.01.079

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 51771035 and 51871030), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors would like to thank Xuehui An from CompuTherm LLC for thermodynamic calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Wu, C., Liu, Y. et al. Phase Stability and Microhardness of the AlxCr2-xCoFeNi High-Entropy Alloys. J. Phase Equilib. Diffus. 42, 379–388 (2021). https://doi.org/10.1007/s11669-021-00890-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00890-0

Keywords

Navigation