Skip to main content
Log in

Phase Equilibria of the Fe-Si-Cr-Al Quaternary System at 800 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The isothermal sections of the Fe-Si-Cr-Al quaternary system at 800 °C with the Fe composition being fixed at 67 at.% and 50 at.% were determined experimentally using optical microscopy, scanning electron microscopy coupled with energy dispersive x-ray spectroscopy, and x-ray diffractometry. Two three-phase regions (BCC-A2 + σ + D03, FeSi + Fe5Si3 + D03) were found in the isothermal sections at 67 at.% Fe. Phase microstructures of Fe-corner in the quaternary Fe-Si-Cr-Al system were investigated, especially the multiphase regions containing bcc disordered phase and bcc ordered phases. D03 occupies almost half of the isothermal section and could maintain equilibrium with all phases (BCC-A2, σ, Fe5Si3, FeSi) in the isothermal section. One four-phase region (BCC-A2 + σ + Cr3Si + D03) and five three-phase regions (Cr3Si + D03 + BCC-A2, Cr3Si + σ + BCC-A2, Cr3Si + D03 + σ, Cr3Si + Fe5Si3 + D03, FeSi + Fe5Si3 + D03) were found in the isothermal section at 50 at.% Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.H.G. Jacobs, R. Schmid-Fetzer, T. Markus, V. Motalov, G. Borchardt, and K.H. Spitzer, Thermodynamics, and diffusion in ternary Fe-Al-Cr alloys, Part I: thermodynamic modeling, Intermetallics, 2008, 16(8), p 995–1005. https://doi.org/10.1016/j.intermet.2008.04.020

    Article  Google Scholar 

  2. K. Yamamoto, Y. Kimura, and Y. Mishima, Phase constitution and microstructure of the Fe-Si-Cr ternary ferritic alloys, Scr. Mater., 2004, 50(7), p 977–981. https://doi.org/10.1016/j.scriptamat.2004.01.006

    Article  Google Scholar 

  3. S. Cui, and I.-H. Jung, Thermodynamic assessments of the Cr-Si and Al-Cr-Si systems, J. Alloys Compd., 2017, 708, p 887–902. https://doi.org/10.1016/j.jallcom.2017.03.042

    Article  Google Scholar 

  4. Y. He, J. Liu, Z. Han, Z. Deng, X. Su, and Y. Ji, Phase transformation and precipitation during solidification of FeCrAl alloy for automobile exhaust gas purifying systems, J. Alloys Compd., 2017, 714, p 251–257. https://doi.org/10.1016/j.jallcom.2017.04.181

    Article  Google Scholar 

  5. A. Leong, R. Qiang, J. Zhang, and M.P. Short, Corrosion behavior of Fe-Cr-Si alloys in simulated PWR primary water environment, J. Nucl. Mater., 2019. https://doi.org/10.1016/j.jnucmat.2019.07.035

    Article  Google Scholar 

  6. W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, and C. Bolfarini, Corrosion resistance of Fe-based amorphous alloys, J. Alloys Compd., 2014, 586(suppl. 1), p S105–S110. https://doi.org/10.1016/j.jallcom.2012.12.130

    Article  Google Scholar 

  7. C. Azcoitia, and A. Karimi, Magnetomechanical damping in Fe-Cr alloys and effect of Al and Mo addition, J. Alloys Compd., 2000, 310(1–2), p 160–164. https://doi.org/10.1016/S0925-8388(00)00938-5

    Article  Google Scholar 

  8. G. Azimi, and M. Shamanian, Effects of silicon content on the microstructure and corrosion behavior of Fe-Cr-C hardfacing alloys, J. Alloys Compd., 2019, 505(2), p 598–603. https://doi.org/10.1016/j.jallcom.2010.06.084

    Article  Google Scholar 

  9. N. Kiyokane, Y. Chen, T. Yamashita, M. Nagoshi, T. Iguchi, and T. Mohri, B2-disorder phase boundary calculations in Fe rich region of Fe-Si binary system with tetrahedron approximation of CVM, Calphad, 2017, 56, p 207–214. https://doi.org/10.1016/j.calphad.2017.01.003

    Article  Google Scholar 

  10. Y. Du, J.C. Schuster, Z.K. Liu, R. Hu, P. Nash, W. Sun, W. Zhang, J. Wang, L. Zhang, C. Tang, Z. Zhu, S. Liu, Y. Ouyang, W. Zhang, and N. Krendelsberger, A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments, Intermetallics, 2008, 16(4), p 554–570. https://doi.org/10.1016/j.intermet.2008.01.003

    Article  Google Scholar 

  11. X. Wang, J. Li, N. Zhang, J. Xie, D. Liang, and L. Deng, Evolution of hyperfine structure and magnetic characteristic in Fe-Si-Cr alloy with increasing heat treatment temperature, Mater. Des., 2016, 96, p 314–322. https://doi.org/10.1016/j.matdes.2016.02.031

    Article  ADS  Google Scholar 

  12. T.D. Nguyen, J. Zhang, and D.J. Young, Effects of silicon on high temperature corrosion of Fe-Cr and Fe-Cr-Ni alloys in carbon dioxide, Oxid. Met., 2014, 81(5–6), p 549–574. https://doi.org/10.1007/s11085-013-9467-y

    Article  Google Scholar 

  13. S. Linderoth, and P.H. Larsen, Investigations of Fe-Cr ferritic steels as sofc interconnect material, Mrs Proc., 1999, 575, p 325. https://doi.org/10.1557/proc-575-325

    Article  Google Scholar 

  14. R. Prescott, and M.J. Graham, The oxidation of iron-aluminum alloys, Oxid. Met., 1992, 38(1–2), p 73–87. https://doi.org/10.1007/BF00665045

    Article  Google Scholar 

  15. Z.G. Zhang, X.J. Zhang, T.J. Pan, N. Yan, Initial stage oxidation of Fe-Al and Fe-Cr-Al alloys at high temperature, Res. Iron Steel., 2007.

  16. V. Raghavan, Cr-Fe-Si (chromium-iron-silicon), J. Phase Equilibria., 1993, 14, p 626–628. https://doi.org/10.1007/BF02669150

    Article  Google Scholar 

  17. M. Lindholm, A thermodynamic description of the Fe-Cr-Si system with emphasis on the equilibria of the sigma phase, J. Phase Equilibria., 1997, 18, p 432. https://doi.org/10.1007/BF02647699

    Article  Google Scholar 

  18. Z. Li, Z. Zhou, X. Wang, Y. Liu, Y.W.M. Zhao, and F. Yin, Experimental study of the phase relations in the Fe-Cr-Si ternary system at 700 °C, Int. J. Mater. Res., 2014, 105(9), p 840–846. https://doi.org/10.3139/146.111100

    Article  Google Scholar 

  19. S. Cui, and I.H. Jung, Thermodynamic assessments of the Fe-Si-Cr and Fe-Si-Mg Systems, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, 48(9), p 4342–4355. https://doi.org/10.1007/s11661-017-4163-1

    Article  ADS  Google Scholar 

  20. U.R. Kattner, B.P. Burton, Al-Fe (Aluminum-Iron), Phase Diagrams of Binary Iron Alloys, ASM International, 1993, pp. 12-28.

  21. O. Kubaschewski, V. Goldbeck, Iron-Binary Phase Diagrams, 1982, pp. 139-142, Springer, Berlin.

  22. A. II’Inskii, S. Slyusarenko, O. Slukhovskii, and I. Kaban, Structural properties of liquid Fe-Si alloys, J. Non-Cryst. Solids., 2002, 306(1), p 90–98. https://doi.org/10.1016/S0022-3093(02)01051-7

    Article  ADS  Google Scholar 

  23. V.P. Itkin, Cr-Fe (Chromium-Iron), in Phase Diagrams of Binary Iron Alloys, ASM International, Materials Park, OH., 1993, p 102-29.

  24. H. Watanabe, H. Yamamoto, and K.I. Ito, Neutron diffraction study of the intermetallic compound FeSi, J. Phys. Soc. Japan., 1963, 18, p 995–999. https://doi.org/10.1143/JPSJ.18.995

    Article  ADS  Google Scholar 

  25. D. Errandonea, D. Santamariaperez, A. Vegas, J. Nuss, M. Jansen, P. Rodriguezhernandez, and A. Munoz, Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations, Phys. Rev. B., 2008, 77(9), p 4113. https://doi.org/10.1103/PhysRevB.77.094113

    Article  Google Scholar 

  26. W. Jauch, A.J. Schultz, and G. Heger, Single-crystal time-of-flight neutron diffraction of Cr3Si and MnF2 comparison with monochromatic-beam techniques, J. Appl. Crystallogr., 1987, 20, p 117–119. https://doi.org/10.1107/S002188988708703X

    Article  Google Scholar 

  27. M. Schütte, R. Wartchow, and M. Binnewies, Shape controlling synthesis - formation of fe3si by the reaction of iron with silicon tetrachloride and crystal structure refinement, Zeitschrift Für Anorg. Allg. Chemie., 2003, 629(10), p 1846–1850. https://doi.org/10.1002/zaac.200300125

    Article  Google Scholar 

  28. G. Bergman, and D.P. Shoemaker, The determination of the crystal structure of the σ phase in the iron–chromium and iron–molybdenum systems, Acta Crystallogr., 1954, 7, p 857–865. https://doi.org/10.1107/S0365110X54002605

    Article  Google Scholar 

  29. A.J. Bradley, and A.H. Jay, The formation of superlattices in alloys of iron and aluminium, Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character, 1932, 136(829), p 210–232. https://doi.org/10.1098/rspa.1932.0075

    Article  ADS  Google Scholar 

  30. O. Ikeda, I. Ohnuma, R. Kainuma, and K. Ishida, Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe–Al system, Intermetallics, 2001, 9(9), p 755–761. https://doi.org/10.1016/S0966-9795(01)00058-9

    Article  Google Scholar 

  31. Z.K. Liu, and Y.A. Chang, Thermodynamic assessment of the Al-Fe-Si system, Metall. Mater. Trans. A., 1999, 30(4), p 1081–1095. https://doi.org/10.1007/s11661-999-0160-3

    Article  Google Scholar 

  32. W. Chubb, S. Alfant, A.A. Bauer, E.J. Jablonowski, F.R. Shober, R.F. Dickerson, Constitution, metallurgy, and oxidation resistance of iron-chromium-aluminum alloys, 1958. https://doi.org/10.2172/4290548.

  33. A.G. Anderson, E.R. Jette, x-ray Investigation of the Iron-chromium-silicon Phase Diagram. Columbia University, 1936.

  34. J.H. Dix, Observations on the Occurrence of Iron and Silicon in Aluminum, Trans. AIME., 1923, 69(957), p 971

    Google Scholar 

  35. V. Raghavan, Al-Fe-Si (Aluminum-Iron-Silicon), J. Phase Equilibria., 1994, 15(4), p 414–416. https://doi.org/10.1007/BF02647566

    Article  Google Scholar 

  36. V. Raghavan, Al-Cr-Fe (aluminum-chromium-iron), J. Phase Equilibria., 2012, 33(1), p 55–58

    Article  Google Scholar 

  37. Z.N. Bulycheva, S.I. Svezhova, V.K. Kondratyev, Change in the temperature og ordering of the alloy Fe$ sub 3$Al in alloyage with the third element, 1969,14(10), 1703.

  38. J. Kopecek, p. Kratochvl, D. Rafaja, D. Rafaja, Ordering in the sublattices of Fe3Al during the phase transformation B2 ↔ D03. Intermet., 1999, 7(12), 1367-1372. DOI:https://doi.org/https://doi.org/10.1016/S0966-9795(99)00057-6.

  39. G. Athanassiadis, J. Foct, and L. Rimlinger, Study of ternary ordered solid solutions derived from Fe3Al by Substitution, Phys. Status Solidi., 2010, 40(2), p 425–435

    Article  ADS  Google Scholar 

  40. G. Inden, and W. Pepperhoff, Experimental study of the order - disorder transition in bcc Fe-Al alloys, Mater. Res. Adv. Tech., 1990, 81, p 770

    Google Scholar 

  41. M.C.J. Marker, L.I. Duarte, C. Leinenbach, and K.W. Richter, Characterization of the Fe-rich corner of Al-Fe-Si-Ti, Intermet., 2013, 39, p 38–49. https://doi.org/10.1016/j.intermet.2013.03.007

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports for this study was provided by the National Natural Science Foundation of China (Grant Nos. 51871030 and 51671036). We also thank for the financial support of Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yang, H., Yan, J. et al. Phase Equilibria of the Fe-Si-Cr-Al Quaternary System at 800 °C. J. Phase Equilib. Diffus. 42, 290–302 (2021). https://doi.org/10.1007/s11669-021-00881-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00881-1

Keywords

Navigation