Skip to main content
Log in

Calculation of Existence Domains and Optimized Phase Diagram for the Nb-Ti Binary Alloy System Using Computational Methods

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

We present the thermodynamic modeling for the Nb-Ti binary alloy system using CALPHAD (CALculation of PHAse diagram) and CE-CVM (Cluster expansion-cluster variation method) focusing on the solid solution part of the system. Existence domains for the various invariant reactions between the interaction parameters of the system were calculated between BCC and HCP phases. Five different regions viz. Simple Isomorphous, Monotectoid, Simple Isomorphous with congruent maxima, Monotectoid with congruent maxima and Syntectoid were identified in the calculated existence domains, each of which has its own characteristic reactional topology. The calculated existence domains are in good agreement with the earlier thermodynamic assessments made on the Nb-Ti system. Further, we have used the first-principles calculation to generate the thermochemical data for BCC and HCP phases for the Nb-Ti system. Moreover, we have also calculated the optimized phase diagram using the calculated existence domains, earlier experimental data, and the generated thermochemical data for the Nb-Ti system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888-3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  Google Scholar 

  2. K.L. Ou, C.C. Weng, Y.H. Lin, and M.S. Huang, A Promising of Alloying Modified Beta-Type Titanium-Niobium Implant for Biomedical Applications: Microstructural Characteristics, In Vitro Biocompatibility and Antibacterial Performance, J. Alloys Compd., 2017, 697, p 231-238. https://doi.org/10.1016/j.jallcom.2016.12.120

    Article  Google Scholar 

  3. M. Fischer, P. Laheurte, P. Acquier, D. Joguet, L. Peltier, T. Petithory, K. Anselme, and P. Mille, Synthesis and Characterization of Ti-27.5Nb Alloy Made by CLAD® Additive Manufacturing Process for Biomedical Applications, Mater. Sci. Eng. C, 2017, 75, p 341-348. https://doi.org/10.1016/j.msec.2017.02.060

    Article  Google Scholar 

  4. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, and H. Nakajima, Peculiar Elastic Behavior of Ti-Nb-Ta-Zr Single Crystals, Acta Mater., 2008, 56, p 2856-2863. https://doi.org/10.1016/j.actamat.2008.02.017

    Article  ADS  Google Scholar 

  5. P.W. Peng, K.L. Ou, C.Y. Chao, Y.N. Pan, and C.H. Wang, Research of Microstructure and Mechanical Behavior on Duplex (α + β) Ti-4.8Al-2.5Mo-1.4V Alloy, J. Alloys Compd., 2010, 490, p 661-666. https://doi.org/10.1016/j.jallcom.2009.10.133

    Article  Google Scholar 

  6. M.C. Chang, C.W. Luo, M.S. Huang, K.L. Ou, L.H. Lin, and H.C. Cheng, High-Temperature Microstructural Characteristics of a Novel Biomedical Titanium Alloy, J. Alloys Compd., 2010, 499, p 171-175. https://doi.org/10.1016/j.jallcom.2010.03.052

    Article  Google Scholar 

  7. W.L. Bragg and E.J. Williams, The Effect of Thermal Agitation on Atomic Arrangement in Alloys, Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact., 1934, 145, p 699-730

    ADS  Google Scholar 

  8. A.T. Dinsdale, Sgte Data for Pure Elements, Calphad, 1991, 15, p 317-425

    Article  Google Scholar 

  9. J.J. Van Laar, Die Scmeltz-oder erstarrungskurven bei binaren systemen, wenn die feste phase ein gemish (amorphe feste losung oder mishkristalle) der beiden komponentern ist, Z. Phys. Chem., 1908, 63, p 216-253

    Google Scholar 

  10. E. Ising, Contribution to the Theory of Ferromagnetism, Z. Phys., 1925, 31, p 253-258. https://doi.org/10.1007/BF02980577

    Article  ADS  MATH  Google Scholar 

  11. W.L. Bragg and E.J. Williams, The Effect of Thermal Agitaion on Atomic Arrangement in Alloys-II, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1935, 151, p 540-566

    ADS  Google Scholar 

  12. E.J. Williams, The Effect of Thermal Agitation on Atomic Arrangement in Alloys-III, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1935, 152, p 231-252

    ADS  Google Scholar 

  13. W. Gorsky, Synthetic Investigation of Transformations in the Alloy Cu Au, J. Phys., 1928, 50, p 64-81

    ADS  Google Scholar 

  14. H.A. Bethe, Statistical Theory of Superlattices, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1935, 150, p 552-575

    ADS  MATH  Google Scholar 

  15. E.A. Guggenheim, The Statistical Mechanics of Regular Solutions, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1935, 148, p 304-312

    ADS  MATH  Google Scholar 

  16. E.A. Guggenheim, Mixtures, Oxford University Press, Oxford, 1952

    Google Scholar 

  17. R. Kikuchi, A Theory of Cooperative Phenomena, Phys. Rev., 1951, 81, p 988

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Kikuchi and H. Sato, Characteristics of Superlattice Formation in Alloys of Face Centered Cubic Structure, Acta Metall., 1974, 22, p 1099-1112

    Article  Google Scholar 

  19. R. Kikuchi and D. De Fontaine, Application of Phase Diagrams in Metallurgy and Ceramics, by GC Cart. NBS Spec. Publ., 1978, 496(2)

  20. R. Kikuchi, Second Hessian Determinant as the Criterion for Order (First or Second) of Phase Transition, Phys. A Stat. Mech. Appl., 1987, 142, p 321-341

    Article  Google Scholar 

  21. J.M. Sanchez and D. de Fontaine, The Fee Ising Model in the Cluster Variation Approximation, Phys. Rev. B., 1978, 17, p 2926-2936. https://doi.org/10.1103/PhysRevB.17.2926

    Article  ADS  MathSciNet  Google Scholar 

  22. J.M. Sanchez, F. Ducastelle, and D. Gratias, Generalized Cluster Description of Multicomponent Systems, Phys. A Stat. Mech. Appl., 1984, 128, p 334-350. https://doi.org/10.1016/0378-4371(84)90096-7

    Article  MathSciNet  Google Scholar 

  23. B.N. Sarma, S.S. Prasad, S. Vijayvergiya, V.B. Kumar, and S. Lele, Existence Domains for Invariant Reactions in Binary Regular Solution Phase Diagrams Exhibiting Two Phases, Bull. Mater. Sci., 2003, 26, p 423-430

    Article  Google Scholar 

  24. H. Schmalzried and H.A.J. Oonk, Phase Theory, The Thermodynamics of Heterogeneous Equilibria. Elsevier Scientific Publishing Company, Amsterdam 1981, 264 Seiten, Preis: $59.50, Berichte Der Bunsengesellschaft Für Phys. Chemie., 1982, 86, p 761

    Article  Google Scholar 

  25. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. De Gironcoli, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, and C. Sbraccia, Q UANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Mater., 2009, https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  26. P. Giannozzi, O. Andreussi, T. Brumme, et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter, 2017, 29(46), p 465901

  27. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, 45, p 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244

    Article  ADS  Google Scholar 

  28. P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  29. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59(1999), p 1758-1774

    Article  ADS  Google Scholar 

  30. A. van de Walle, Multicomponent Multisublattice Alloys, Nonconfigurational Entropy and Other Additions to the Alloy Theoretic Automated Toolkit, Calphad, 2009, 33, p 266-278. https://doi.org/10.1016/J.CALPHAD.2008.12.005

    Article  Google Scholar 

  31. A. van de Walle, M. Asta, and G. Ceder, The Alloy Theoretic Automated Toolkit: A User Guide, Calphad, 2002, 26, p 539-553. https://doi.org/10.1016/S0364-5916(02)80006-2

    Article  Google Scholar 

  32. A. Van De Walle, Q. Hong, S. Kadkhodaei, and R. Sun, The Free Energy of Mechanically Unstable Phases, Nat. Commun., 2015, 6, p 1-6. https://doi.org/10.1038/ncomms8559

    Article  Google Scholar 

  33. A. Van De Walle, S. Kadkhodaei, R. Sun, and Q.J. Hong, Epicycle Method for Elasticity Limit Calculations, Phys. Rev. B, 2017, https://doi.org/10.1103/PhysRevB.95.144113

    Article  Google Scholar 

  34. R. Sun and A. van de Walle, Automating Impurity-Enhanced Antiphase Boundary Energy Calculations from Ab Initio Monte Carlo, Calphad, 2016, 53, p 20-24. https://doi.org/10.1016/J.CALPHAD.2016.02.005

    Article  Google Scholar 

  35. A. van de Walle, R. Sun, Q.-J. Hong, and S. Kadkhodaei, Software Tools for High-Throughput CALPHAD from First-Principles Data, Calphad, 2017, 58, p 70-81. https://doi.org/10.1016/J.CALPHAD.2017.05.005

    Article  Google Scholar 

  36. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Efficient Stochastic Generation of Special Quasirandom Structures, Calphad, 2013, 42, p 13-18. https://doi.org/10.1016/J.CALPHAD.2013.06.006

    Article  Google Scholar 

  37. A. Van de Wall and M. Asta, Self-driven Lattice-Model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams, Model. Simul. Mater. Sci. Eng., 2002, 10, p 521-538. https://doi.org/10.1088/0965-0393/10/5/304

    Article  ADS  Google Scholar 

  38. A. van de Walle and G. Ceder, Automating First-Principles Phase Diagram Calculations, J. Phase Equilib., 2002, 23, p 348-359. https://doi.org/10.1361/105497102770331596

    Article  Google Scholar 

  39. A. Van De Walle, Methods for First-Principles Alloy Thermodynamics, JOM, 2013, 65, p 1523-1532. https://doi.org/10.1007/s11837-013-0764-3

    Article  Google Scholar 

  40. A. Van De Walle, A Complete Representation of Structure-Property Relationships in Crystals, Nat. Mater., 2008, 7, p 455-458. https://doi.org/10.1038/nmat2200

    Article  ADS  Google Scholar 

  41. A. Van De Walle and D.E. Ellis, First-Principles Thermodynamics of Coherent Interfaces in Samarium-Doped Ceria Nanoscale Superlattices, Phys. Rev. Lett., 2007, 98, p 1-4. https://doi.org/10.1103/PhysRevLett.98.266101

    Article  Google Scholar 

  42. E. Cockayne and A. Van De Walle, Building effective models from sparse but precise data: application to an alloy cluster expansion model, Phys. Rev. B Condens. Matter Mater. Phys., 2010, 81, p 1-4. https://doi.org/10.1103/PhysRevB.81.012104

    Article  Google Scholar 

  43. A. Van De Walle, Q. Hong, L. Miljacic, C.B. Gopal, S. Demers, G. Pomrehn, A. Kowalski, and P. Tiwary, Ab Initio Calculation of Anisotropic Interfacial Excess Free Energies, Phys. Rev. B Condens. Matter Mater. Phys., 2014, 89, p 1-11. https://doi.org/10.1103/PhysRevB.89.184101

    Article  Google Scholar 

  44. E. Rudy, Report AFML-TR-65-2, Part V. (1969)

  45. M. Hansen, E.L. Kamen, H.D. Kessler, and D.J. McPherson, Systems Titanium-Molybdenum and Titanium-Columbium. Trans. AIME, 1951, 191, p 881

    Google Scholar 

  46. A.G. Imgram, D.N. Williams, R.A. Wood, H.R. Ogden, and R.I. Jaffee, Metallurgical and Mechanical Characteristics of High-Purity Titanium-Base Alloys. WADC Technical Report 59-595, Part II, March (1961)

  47. G.N. Ronami, S.M. Kuznetsova, S.G. Fedotov, and K.M. Konstantinov, The Determination of the Phase Boundaries in the Ti-V, Ti-Nb and Ti-Mo Systems by the Diffusion Layer Method, Vestn. Mosk. Univ. Ser. III. Fiz. Astron., 1970, 11, p 186-189

    Google Scholar 

  48. A.R.G. Brown and K.S. Jepson, Métallurgie physique et charactéristiques mécaniques des alliages titane-niobium, Mem. Etud. Sci. Rev. Met., 1966, 63, p 575-584

    Google Scholar 

  49. Y. Zhang, H. Liu, and Z. Jin, Thermodynamic Assessment of the Nb-Ti System, Calphad, 2001, 25, p 305-317

    Article  Google Scholar 

  50. A.M. Zakharov, V.P. Pshokin, A.I. Baikov, zakharov et al., On the Existence of the Compound Niobium Titanide in the Niobium-Titanium System. Izv. Tsvetn. Met., 1969, 6, p 104-108

    Google Scholar 

  51. L.S. Guzei, E.M. Sokolovskaya, A.T. Grigorev et al., Phase Diagram of the Niobium-Titanium System. Vestn. Moscov. Univ. Khim., 1966, 21, p 79

    Google Scholar 

  52. J.L. Murray, The Nb-Ti (Niobium-Titanium) System, Bull. Alloy Phase Diagr., 1981, 2, p 55-61

    Article  Google Scholar 

  53. J. Zhao and M.R. Notis, Phase Transformation Kinetics and the Assessment of Equilibrium and Metastable States, J. Phase Equilib., 1993, 14, p 303-315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Pandey, V.K. & Jindal, V. Calculation of Existence Domains and Optimized Phase Diagram for the Nb-Ti Binary Alloy System Using Computational Methods. J. Phase Equilib. Diffus. 41, 846–858 (2020). https://doi.org/10.1007/s11669-020-00843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00843-z

Keywords

Navigation