Skip to main content
Log in

Phase Equilibria in the Quasi-Ternary System Cu2Se-GeSe2-Sb2Se3

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The isothermal section of the quasi-ternary system Cu2Se-GeSe2-Sb2Se3 at 620 K (347 °C) and the liquidus surface projection of the system onto the concentration triangle have been built. The sections Cu2GeSe3-CuSbSe2 and Cu2GeSe3-Sb2Se3 are quasi-binary systems of the eutectic type. The eutectic point coordinates in the Cu2GeSe3-Sb2Se3 system are: 70 mol.% Sb2Se3-30 mol.% Cu2GeSe3, 780 K (507 °C). In the Cu2GeSe3-CuSbSe2 system the eutectic point coordinates are: 10 mol.% Cu2GeSe3-90 mol.% CuSbSe2, 750 K (477 °C). The liquidus surface projection is represented by the fields of the primary crystallization of Cu2Se (high-temperature modification), Cu8GeSe6 (high- and low-temperature modifications), Cu2GeSe3, GeSe2, Sb2Se3, CuSbSe2 and Cu3SbSe3 compounds. The fields are separated by 9 nonvariant points corresponding to the processes in the quasi-binary systems and 7 nonvariant points at the planes of the respective nonvariant processes in the quasi-ternary sub-systems Cu2Se-Cu2GeSe3-CuSbSe2, Cu2GeSe3-Sb2Se3-CuSbSe2, Cu2GeSe3-GeSe2-Sb2Se3. Solid solubility in binary and ternary compounds does not exceed 5 mol.%, no quaternary phases were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Chetty, D.S. Prem Kumar, M. Falmbigl, P. Rogl, S.-W. You, I.-H. Kim, and R.C. Mallik, Thermoelectric Properties of Indium Doped Cu2GeSe3, Intermetallics, 2014, 54, p 1-6

    Article  Google Scholar 

  2. Q. Cang, H. Guo, X. Jia, H. Ning, C. Ma, J. Zhang, and N. Yuan, Enhancement in the Efficiency of Sb2Se3 Solar Cells by Adding Low Lattice Mismatch CuSbSe2 Hole Transport Layer, J. Sol. Energy, 2020, 199, p 19-25

    Article  ADS  Google Scholar 

  3. I.V. Kityk, V.O. Yukhymchuk, A. Fedorchuk, V.V. Halyan, I.A. Ivashchenko, I.D. Oleksieyuk, M.A. Skoryk, G. Lakshminarayana, A.M. El-Naggar, A.A. Albassam, O.O. Lebed, and M. Piasecki, Laser Stimulated Piezo-Optics of γ-Irradiated (Ga55In45)2S300 and (Ga54.59In44.66Er0.75)2S300 Single Crystals, J. Alloys Compd., 2017, 722, p 265-271

    Article  Google Scholar 

  4. I.A. Ivashchenko, I.V. Danyliuk, L.D. Gulay, V.V. Halyan, and I.D. Olekseyuk, Isothermal Sections of the Quasi-Ternary Systems Ag2S(Se)-Ga2S(Se)3-In2S(Se)3 at 820 K and the Physical Properties of the Ternary Phases Ga5.5In4.5S15, Ga6In4Se15 and Ga5.5In4.5S15:Er3+, Ga6In4Se15:Er3+, J. Solid State Chem., 2016, 237, p 113-120

    Article  ADS  Google Scholar 

  5. O.M. Strok, I.D. Olekseyuk, O.F. Zmiy, I.A. Ivashchenko, and L.D. Gulay, The Quasi-Ternary System Cu2Se-Ga2Se3-GeSe2, J. Phase Equilib. Diffus., 2013, 34(2), p 94-103

    Article  Google Scholar 

  6. O. Klymovych, I. Ivashchenko, I. Olekseyuk, O. Zmiy, and Z. Lavrynyuk, Quasi-Ternary System Cu2Se-GeSe2-As2Se3, J. Phase Equilib. Diffus., 2020, 41(2), p 157-163

    Article  Google Scholar 

  7. T.A. Ostapyuk, O.F. Zmiy, and I.D. Olekseyuk, Phase Equilibria in the Quasy-Ternary Cu2Se-GeSe2-Sb2Se3 System, Volyn State Univ. Sci. Bull., 2009, 24, p 73

    Google Scholar 

  8. G.P. Sorokin, G.Z. Idrigan, and L.V. Derkach, Some Properties of Cu2-xSe, Neorg. Mater., 1974, 10(6), p 969-974

    Google Scholar 

  9. T.B. Massalsky, Binary Alloy Phase Diagrams, Vol 1–3, American Society for Metals, Metals Park, 1986

    Google Scholar 

  10. L.D. Gulay, M. Daszkiewicz, O.M. Strok, and A. Pietraszko, Crystal Structure of Cu2Se, Chem. Met. Alloys, 2011, 4, p 200-205

    Article  Google Scholar 

  11. G. Dittmar and H. Schaëfer, The Crystal Structure of Germanium Diselenide, Acta Crystallogr. B, 1976, 32, p 2726-2728

    Article  Google Scholar 

  12. S.G. Mamedova, F.M. Sadygov, V.A. Gasymov, and M.B. Babanly, The Sb2Se3-CeSe and Bi2Se3-CeSe Systems, Zhurn. Neorg. Khim., 2003, 48(3), p 494-496

    Google Scholar 

  13. L.V. Piskach, Y.E. Romanyuk, and O.V. Parasyuk, The Phase Equilibria in the Quasi-Binary Cu2GeS3(Se3)-CdS(Se) Systems, J. Alloys Compd., 2000, 299(1–2), p 227-231

    Article  Google Scholar 

  14. E. Parthe and J. Garin, Sphalerite and Wurtzite Structures for Ternary Chalcogenides with the Composition 12463, Monatshefte Chem., 1971, 102(5), p 1197-1208

    Article  Google Scholar 

  15. M. Onoda, M. Ishii, P. Pattison, K. Shibata, A. Yamamoto, and G. Chapuis, Superspace-Group Approach to the Phase Transition of Cu8GeSe6, J. Solid State Chem., 1999, 146(2), p 355-362

    Article  ADS  Google Scholar 

  16. M.I. Golovey, V.I. Tkachenko, M.Y. Rigan, and I.P. Stasyuk, Phase Diagram of the Cu2Se-Sb2Se3 System in the Region of the CuSbSe2 Compound, Neorg. Mater., 1990, 26(5), p 933-934

    Google Scholar 

  17. A.Z. Pfitzner, Cu3SbSe3: Synthese und Kristallstruktur, Anorg. Allg. Chem., 1995, 621(4), p 685-688

    Article  Google Scholar 

  18. I.D. Olekseyuk and O.Y. Zhbankov, Isothermal sections of the Cu2Se-In2Se3-{Sb, Bi}2Se3 systems at 673 K. Volyn State Univ. Sci. Bull., 2006, 4(10), p 73-75

    Google Scholar 

  19. D.I. Bletzkan, Crystalline and Glassy Chalcogenides of Si, Ge, Sn and Their Alloys, Zakarpattia, Uzhgorod, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ivashchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchenko, I.A., Ostapyuk, T.A., Olekseyuk, I.D. et al. Phase Equilibria in the Quasi-Ternary System Cu2Se-GeSe2-Sb2Se3. J. Phase Equilib. Diffus. 41, 827–834 (2020). https://doi.org/10.1007/s11669-020-00840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00840-2

Keywords

Navigation