Skip to main content

Metastable Dendrite Morphologies in Aluminum Alloys

Abstract

Cubic metallic alloys generally grow along 〈100〉 directions due to the anisotropy of the solid–liquid interfacial energy. Under rapid solidification conditions, dendrites may deviate from 〈100〉 and develop unusual morphologies. Here, Al-alloy droplets (Al-4.5Cu, Al-10Si, Al-1.9Fe, Al-33Cu, all in wt.%) were rapidly solidified using Impulse Atomization to study the microstructures forming at different cooling rates and undercoolings. Growth morphologies of Al-4.5Cu droplets were characterized using x-ray micro-tomography and EBSD. Al-dendrites were found to grow along either 〈100〉 or a more unusual 〈111〉 depending on the solidification conditions. Also, a transition from 〈111〉 to 〈100〉 in the same droplet was observed. These uncommon growth directions were also observed in other Al-alloys. In Al-1.9Fe droplets, a change in dendrite growth direction from 〈100〉 to 〈111〉 was observed, while 〈110〉 growth directions were detected in Al-10Si samples. These experimental observations will be related to their solidification conditions using Solidification Continuous Cooling Transformation diagrams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    M. Kahlweit, On the Dendritic Growth of NH4CI, Crystals from Aqueous Solutions. II, J. Cryst. Growth, 1970, 7, p 74-78

    ADS  Article  Google Scholar 

  2. 2.

    S.-K. Chan, H.-H. Reimer, and M. Kahlweit, On the Stationary Growth Shapes of NH4Cl Dendrites, J. Cryst. Growth, 1976, 32, p 303-315

    ADS  Article  Google Scholar 

  3. 3.

    K.A. Gudgel and K.A. Jackson, Oscillatory Growth of Directionally Solidified Ammonium Chloride Dendrites, J. Cryst. Growth, 2001, 225, p 264-267

    ADS  Article  Google Scholar 

  4. 4.

    J. Herenguel, Les procédés de coulée semi-continue et continue des métaux non ferreux et leurs conséquences métallurgiques, Revue de Métallurgie, 1948, 45, p 139-146

    Article  Google Scholar 

  5. 5.

    S. Henry, P. Jarry, and M. Rappaz, <110> Dendrite Growth in Aluminum Feathery Grains, Metall. Mater. Trans. A, 1998, 29, p 2807-2817

    Article  Google Scholar 

  6. 6.

    S. Henry, T. Minghetti, and M. Rappaz, Dendrite Growth Morphologies in Aluminium Alloys, Acta Mater., 1998, 46(18), p 6431-6443

    ADS  Article  Google Scholar 

  7. 7.

    A. Sémoroz, Y. Durandet, and M. Rappaz, EBSD Characterization of Dendrite Growth Directions, Texture and Misorientations in Hot-Dipped Al-Zn-Si Coatings, Acta Mater., 2001, 49, p 529-541

    ADS  Article  Google Scholar 

  8. 8.

    F. Gonzales and M. Rappaz, Dendrite Growth Directions in Aluminum-Zinc Alloys, Metall. Mater. Trans. A, 2006, 37, p 2797-2806

    Article  Google Scholar 

  9. 9.

    T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz, Orientation Selection in Dendritic Evolution, Nat. Mater., 2006, 5, p 660-664

    ADS  Article  Google Scholar 

  10. 10.

    J. Friedli, J.L. Fife, P. Di Napoli, and M. Rappaz, Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy, Metall. Mater. Trans. A, 2013, 44, p 5522-5531

    Article  Google Scholar 

  11. 11.

    G. Kurtuldu, P. Jarry, and M. Rappaz, Influence of Icosahedral Short Range Order on Diffusion in Liquids: A Study on Al-Zn-Cr Alloys, Acta Mater., 2016, 115, p 423-433

    ADS  Article  Google Scholar 

  12. 12.

    M. Becker, J.A. Dantzig, M. Kolbe, S.T. Wiese, and F. Kargl, Dendrite Orientation Transition in AleGe Alloys, Acta Mater., 2019, 165, p 666-677

    ADS  Article  Google Scholar 

  13. 13.

    L. Wang, J. Hoyt, N. Wang, N. Provatas, and C.W. Sinclair, Controlling Solid-Liquid Interfacial Energy Anisotropy Through the Isotropic Liquid, Nat. Commun., 2020, 11, p 724

    ADS  Article  Google Scholar 

  14. 14.

    S.J. Savage and F.H. Froes, Production of Rapidly Solidified Metals and Alloys, J. Metals, 1984, 36(4), p 20-32

    Google Scholar 

  15. 15.

    H. Henein, Single Fluid Atomization Through the Application of Impulses to a Melt, Mater. Sci. Eng. A, 2002, 326(1), p 92-100

    Article  Google Scholar 

  16. 16.

    N. Ellendt, R. Schmidt, J. Knabe, H. Henein, and V. Uhlenwinkel, Spray Deposition Using Impulse Atomization Technique, Mater. Sci. Eng. A, 2004, 383(1), p 107-113

    Article  Google Scholar 

  17. 17.

    J.B. Wiskel, H. Henein, and E. Maire, Solidification Study of Aluminum Alloys Using Impulse Atomization: Part I: Heat Transfer Analysis of an Atomized Droplet, Can. Metall. Quart., 2002, 41(1), p 97-110

    Article  Google Scholar 

  18. 18.

    J.B. Wiskel, H. Henein, and E. Maire, Solidification Study of Aluminum Alloys Using Impulse Atomization: Part II: Effect of Cooling Rate on Microstructure, Can. Metall. Q., 2002, 41(2), p 193-204

    Article  Google Scholar 

  19. 19.

    M. Bedel, G. Reinhart, A.-A. Bogno, C.-A.J.S. Gandin, E. Boller, H. Nguyen-Thi, and H. Henein, Characterization of Dendrite Morphologies in Rapidly Solidified Al–4.5 wt.%Cu Droplets, Acta Mater., 2015, 89, p 234-246

    ADS  Article  Google Scholar 

  20. 20.

    J. Valloton, A.-A. Bogno, H. Henein, D.M. Herlach, and D. Sediako, Scandium Effect on Undercooling and Dendrite, Metall. Mater. Trans. A, 2019, 50, p 5700-5706

    Article  Google Scholar 

  21. 21.

    W. Hearn, The Microstructure, Morphology and Mechanical Properties of Rapidly Solidified Al-10 wt%Si Alloy, University of Alberta, Edmonton, 2018

    Google Scholar 

  22. 22.

    A. Mullis, K. Dragnevski, and R. Cochrane, The Transition from the Dendrite to the Seaweed Growth Morphology During the Solidification of Deeply Undercooled Metallic Melts, Mater. Sci. Eng. A, 2004, 375–377, p 157-162

    Article  Google Scholar 

  23. 23.

    H. Assadi, M. Oghabi, and D.M. Herlach, Influence of Ordering Kinetics on Dendritic Growth Morphology, Acta Mater., 2009, 57, p 1639-1647

    ADS  Article  Google Scholar 

  24. 24.

    H. Henein, V. Buchoud, R.-R. Schmidt, C. Watt, D. Malakov, C.-A. Gandin, G. Lesoult, and V. Uhlenwinkel, Droplet Solidification of Impulse Atomized Al-0.61Fe and Al-1.9Fe, Can. Metall. Quart., 2010, 49(3), p 275-292

    Article  Google Scholar 

  25. 25.

    J. Chen, U. Dahlborg, C.M. Bao, M. Calvo-Dahlborg, and H. Henein, Microstructure Evolution of Atomized Al– 0.61 wt%Fe and Al–1.90 wt%Fe Alloys, Metall. Mater. Trans. B, 2011, 42, p 557-567

    Article  Google Scholar 

  26. 26.

    R. Heringer, C.-A. Gandin, G. Lesoult, and H. Henein, Atomized Droplet Solidification as an Equiaxed Growth Model, Acta Mater., 2006, 54, p 4427-4440

    ADS  Article  Google Scholar 

Download references

Acknowledgment

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Holistic Innovation in Additive Manufacturing (HI-AM) Network and the European Space Agency (ESA) within the frame of the NEQUISOL project is gratefully acknowledged. The assistance of Daniel Auras with morphology analysis is appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Valloton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henein, H., Bogno, AA., Hearn, W. et al. Metastable Dendrite Morphologies in Aluminum Alloys. J. Phase Equilib. Diffus. 41, 784–792 (2020). https://doi.org/10.1007/s11669-020-00833-1

Download citation

Keywords

  • aluminum alloys
  • growth directions
  • impulse atomization
  • metastable