Skip to main content
Log in

Diffusivity and Atomic Mobility in fcc Ni-Fe-V System: Experiment and Modeling

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this work, the ternary diffusion behavior in fcc Ni-Fe-V system has been investigated by means of solid-state diffusion couple technique at 1000, 1100 and 1200 °C. The composition-dependent ternary interdiffusion coefficients were determined via Whittle-Green method, in which the uncertainties were calculated by error propagation and the reliability was validated via thermodynamic constraints. The ternary main interdiffusion coefficients of \(\tilde{D}_{\text{FeFe}}^{\text{Ni}}\) and \(\tilde{D}_{\text{VV}}^{\text{Ni}}\) were compared with the ones in binary Fe-Ni and Ni-V systems in the literature, respectively. The obtained interdiffusion coefficients combined with the thermodynamic description were employed to evaluate the atomic mobilities in fcc Ni-Fe-V system through the DICTRA (DIffusion-Controlled TRAnsformations) software package. A comprehensive comparison between the model-predicted diffusion behaviors and the experimental ones, including concentration/interdiffusion-flux distribution and diffusion path, confirms the reliability of the present atomic mobility. Besides, based on the presently obtained atomic mobilities, three-dimensional surfaces for the diagonal interdiffusivity at 1000, 1100 and 1200 °C were plotted. Furthermore, three-dimensional planes of the activation energy and frequency-factor of main interdiffusivities were evaluated using the Arrhenius equation. This work is part of our work to build a general kinetic database for soft magnetic alloys and cemented carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Choudhuri, R.V. Ramanujan, and R. Banerjee, Laser Additive Processing of Ni-Fe-V and Ni-Fe-Mo Permalloys: Microstructure and Magnetic Properties, Mater. Lett., 2017, 192, p 9-11

    Article  Google Scholar 

  2. V. Raposo, M. Zazo, A.G. Flores, J. Garcia, V. Vega, J. Iñiguez, and V.M. Prida, Ferromagnetic Resonance in Low Inter-acting Permalloy Nanowire Arrays, J. Appl. Phys., 2016, 119(14), p 1-5

    Article  Google Scholar 

  3. B. Zhang, N.-E. Fenineche, L. Zhu, H. Liao, and C. Coddet, Studies of Magneticproperties of Permalloy (Fe-30% Ni) Prepared by SLM Technology, J. Magn. Magn. Mater., 2012, 324(4), p 495-500

    Article  ADS  Google Scholar 

  4. Y. Gao, B. Luo, K. He, W. Zhang, and Z. Bai, Effect of Fe/Ni Ratio on the Microstructure and Properties of WC-Fe-Ni-Co Cemented Carbides, Ceram. Int., 2018, 44(2), p 2030-2041

    Article  Google Scholar 

  5. P. Zhou, Y. Du, and W. Lengauer, Morphology of η Phase in Cemented Carbides with Fe-based Binders Influenced by Carbon Content and Nitrogen Atmosphere, Ceram. Int., 2019, 45(16), p 20774-20779

    Article  Google Scholar 

  6. N.G. Hashe, J.H. Neethling, P.R. Berndt, H.-O. Andrén, and S. Norgren, A Comparison of the Microstructures of WC-VC-TiC-Co and WC-VC-Co Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2007, 25(3), p 207-213

    Article  Google Scholar 

  7. J. Vovrosh, G. Voulazeris, P.G. Petrov, J. Zou, Y. Gaber, L. Benn, D. Woolger, M.M. Attallah, V. Boyer, K. Bongs, and M. Holynski, Additive Manufacturing of Magnetic Shielding and Ultra-high Vacuum Flange for Cold Atom Sensors, Sci. Rep., 2018, 8(1), p 1-10

    Article  Google Scholar 

  8. A. B. Kustas, D. F. Susan, K. L. Johnson, S. R. Whetten, M. A. Rodriguez, D. J. Dagel, J. R. Michael, D. M. Keicher, and N. Argibay, Characterization of the Fe-Co-1.5 V Soft Ferromagnetic Alloy Processed by Laser Engineered Net Shaping (LENS), Addit. Manuf., 2018, 21, p 41-52

  9. C. Zhao, Y. Yang, Y. Lu, Y. Guo, C. Wang, and X. Liu, Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Fe-Ni-V system, Calphad, 2014, 46, p 80-86

    Article  Google Scholar 

  10. J.O. Andersson, L. Höglund, B. Jönsson, J. Ågren, and C.R. Purdy, Ed., Fundamentals and Applications of Ternary Diffusion, Pergamon Press, New York, 1990, p 153-163

    Book  Google Scholar 

  11. Y. Liu, C. Chen, D. Liu, Y. Du, S. Liu, and X. Tao, Diffusivities and Atomic Mobilities for fcc Cu-Ni-Sn Alloys, Calphad, 2017, 59, p 84-89

    Article  Google Scholar 

  12. D.P. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scripta Mater., 1974, 8, p 883-884

    Article  Google Scholar 

  13. J.S. Kirkaldy and J.E. Lane, Diffusion in Multicomponent Metallic Systems. IX. Intrinsic Diffusion Behavior and the Kirkendall Effect in Ternary Substitutional Solutions, Can. J. Phys., 1966, 44, p 2159-2172

  14. A. Paul, T. Laurila, V. Vuorinen, and S. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, Inter-national Publishing, 2014, p 248-249.

  15. B. Jönsson, Mobilities in Fe-Ni alloys. Assessment of the Mobilities of Fe and Ni in fcc. Fe-Ni Alloys, Scand. J. Metall., 1994, 23, p 201-208

  16. J.O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350-1355

    Article  ADS  Google Scholar 

  17. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, J. Ind. Eng. Chem., 1948, 40, p 345-348

  18. A. Einstein, On the Movement of Small Particles Suspend in Stationary Liquids Required by the Molecular-kinetic Theory of Heat, Ann. Physik., 1905, 17, p 549-560

    Article  ADS  Google Scholar 

  19. L. Onsager, Theories and Problems of Liquid Diffusion, Ann. N. Y. Acad. Sci., 1945, 46, p 241-265

    Article  ADS  Google Scholar 

  20. Y. Liu, D. Liu, Y. Du, S. Liu, D. Kuang, P. Deng, J. Zhang, and C. Du, Calculated Inter-diffusivities Resulting from Different Fitting Functions Applied to Measured Concentration Profiles in Cu-rich fcc Cu-Ni-Sn Alloys at 1073 K, J. Min. Metall. Sect. B Metall., 2017, 53(3), p 255-262

    Article  Google Scholar 

  21. J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, and E. Audubert, Volume Interdiffusion Coefficient and Uncertainty Assessment for Polycrystalline Materials, Diffus. Fundam. Org., 2012, 17, p 1-39

    Google Scholar 

  22. J. Goldstein, R. Hanneman, and R. Ogilvie, Diffusion in the Fe-Ni System at 1 Atm and 40 Kbar Pressure (Interdiffusion Coefficients for Fe-Ni alloy as Function of Composition in Alpha and Gamma Phases at 1 Atm and 40 Kbar Pressure), Trans. AIME, 1965, 233, p 812-820

    Google Scholar 

  23. T. Ustad and H. Sørum, Interdiffusion in the Fe-Ni, Ni-Co, and Fe-Co Systems, Phys. Stat. Solidi. A, 1973, 20(1), p 285-294

    Article  ADS  Google Scholar 

  24. Y. Nakagawa, Y. Tanji, H. Morita, H. Hiroyoshi, and H. Fujimord, Virtual Miscibility Gap and Interdiffusion Coefficient in Iron-nickel Invar Alloys, J. Magn. Magn. Mater., 1979, 10, p 145-151

    Article  ADS  Google Scholar 

  25. C. Wells and R. Mehl, Rate of Diffusion of Nickel in Gamma Iron in Low-Carbon and High-Carbon Nickel Steels, Trans. Aime., 1941, 145, p 329-338

    Google Scholar 

  26. A. Davin, V. Leroy, D. Coutsouradis, and L. Habraken, Comparison of the Diffusion of Some Substitution Elements in Nickel and Cobalt, Cobalt, 1963, 19, p 51-56

    Google Scholar 

  27. V. Khlomov, V. Pimenov, Y. Ugaste, and K. Gurov, Study of Mutual Diffusion in Nickel-Vanadium System, Fiz. Met. Metal., 1978, 46, p 668-671

    Google Scholar 

  28. M. Liu, L. Zhang, W. Chen, J. Xin, and H. Xu, Diffusivities and Atomic Mobilities in fcc_A1 Ni-X (X= Ge, Ti and V) Alloys, Calphad, 2013, 41, p 108-118

    Article  Google Scholar 

  29. A.W. Bowen and G.M. Leak, Solute Diffusion in Alpha-and Gamma-iron, Metall. Trans., 1970, 1, p 1695-1700

    Article  Google Scholar 

  30. J. Zhang, Y. Liu, Y. Du, S. Liu, and J. Wang, Interdiffusion and Atomic Mobilities of fcc Co-V-Mo Alloys: Measurement and Modeling, J. Phase Equilib. Diffus., 2018, 39(5), p 623-634

    Article  Google Scholar 

  31. S. Wen, Y. Du, Y. Liu, P. Zhou, and Z. Liu, Atomic Mobility Evaluation and Diffusion Matrix for fcc_A1 Co-V-W Alloys, J. Mater. Sci., 2019, 54, p 13420-13432

    Article  ADS  Google Scholar 

  32. H. Liu, Y. Liu, Y. Du, Q. Min, J. Zhang, and S. Liu, Atomic Mobilities and Diffusivities in fcc Co-X (X= Mn, Pt and Re) Alloys, Calphad, 2019, 64, p 306-312

    Article  Google Scholar 

  33. C. Du, Z. Zheng, Q. Min, Y. Du, Y. Liu, P. Deng, J. Zhang, S. Wen, and D. Liu, A Novel Approach to Calculate Diffusion Matrix in Ternary Systems: Application to Ag-Mg-Mn and Cu-Ni-Sn Systems, Calphad, 2020, 68, p 1-12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51701072), and Natural Science Foundation of Hunan Province, China (No. 2017JJ3088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuling Liu or Yong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Günter Effenberg. The special issue was organized by Andrew Watson, Coventry University, Coventry, United Kingdom; Svitlana Iljenko, MSI, Materials Science International Services GmbH, Stuttgart, Germany; and Rainer Schmid-Fetzer, Clausthal University of Technology, Clausthal-Zellerfield, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wen, S., Liu, Y. et al. Diffusivity and Atomic Mobility in fcc Ni-Fe-V System: Experiment and Modeling. J. Phase Equilib. Diffus. 41, 550–566 (2020). https://doi.org/10.1007/s11669-020-00824-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00824-2

Keywords

Navigation