Skip to main content
Log in

Growth Kinetics of TiAl3 Diffusion Coating by Pack Cementation on Beta 21-S

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The growth kinetics of protective diffusion aluminide coatings were investigated on Ti based alloy Beta-21S. The coating was prepared by halide activated pack cementation using CrCl3 as transport agent and pure aluminum (high activity) as masteralloy. The coating was composed of only TiAl3 layer whose growth was controlled by solid state diffusion following a parabolic law. The morphology of the coating was quite similar with interdiffusion products present in a bulk semi-infinite diffusion couple as showed by previous literature studies. The transport phenomena are significantly affected by the alloying elements present in the alloys and dissolved in the coating layer. The activation energy estimated at 108 kJ mol−1 determined for temperatures in the range 660-760 °C, indicates a bulk diffusion process with a possible grain boundary contribution and/or kinetic limitations associated to the mobility of the gaseous species during the aluminization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng., A, 1996, 213, p 103-114. https://doi.org/10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  2. C. Cui, B.M. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32, p 1684-1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  Google Scholar 

  3. P. Singh, H. Pungotra, and N.S. Kalsi, On the Characteristics of Titanium Alloys for the Aircraft Applications, Mater. Today Proc., 2017, 4, p 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249

    Article  Google Scholar 

  4. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14, p 681-685. https://doi.org/10.1361/105994905X

    Article  Google Scholar 

  5. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., 2003, 5(6), p 419-427. https://doi.org/10.1002/adem.200310095

    Article  Google Scholar 

  6. R.W. Schutz, Environmental Behavior of Beta Titanium Alloys, J. Met., 1994, 46, p 24-29. https://doi.org/10.1007/BF03220744

    Article  Google Scholar 

  7. R.R. Boyer, Aerospace Applications of Beta Titanium Alloys, J. Met., 1994, 46, p 20-23. https://doi.org/10.1007/BF03220743

    Article  Google Scholar 

  8. P. Kofstad, High-Temperature Oxidation of Titanium, J. Less Common Met., 1967, 12(6), p 449-464

    Article  Google Scholar 

  9. R.K. Wallace, The effect of oxidation on the mechanical properties of Beta-21S, Beta Titanium Alloys in the 1990’s, Minerals, R. Eylon, Ed., Metals & Materials Society, Pittsburgh, 1993,

    Google Scholar 

  10. T.A. Wallace, R.K. Clark, K.E. Wiedemann, Oxidatoin characteristics of Beta-21S in air in the temperature range 600-800  °C. in, National Aeronautics and Space Administration (NASA), Hampton, VA (United States) Langley Res. Center, Doc. ID 19920013164, March (1992)

  11. C. Leyens and M. Peters, Oxidation and Protection of Titanium Alloys and Titanium Aluminides, Titanium and Titanium Alloys: Fundamentals and Applications, C. Leyens and M. Peters, Ed., WILEY-VCH Verlag, Weinheim, 2003, p 187-230 https://doi.org/10.1002/3527602119.ch6

    Chapter  Google Scholar 

  12. J. Dai, J. Zhu, C. Chen, and F. Weng, High Temperature Oxidation Behavior and Research Status of Modifications on Improving High Temperature Oxidation Resistance of Titanium Alloys and Titanium Aluminides: A Review, J. Alloy. Compd., 2016, 685, p 784-798. https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  Google Scholar 

  13. K. Calvert and Y. Kosaka, Evaluation of titanium alloys after high temperature air exposure, in Proceedings of the 13th World Conference on Titanium, August 1620, 2015 (San Diego), The Minerals, Metals & Materials Society, 2016, pp 1607–1612. https://doi.org/10.1002/9781119296126.ch269

  14. M.C. Galetz, C. Oskay, and S. Madloch, Microstructural Degradation and Interdiffusion Behavior of NiAl and Ge-Modified NiAl Coatings Deposited on Alloy 602 CA, Surf. Coat. Technol., 2019, 364, p 211-217. https://doi.org/10.1016/j.surfcoat.2019.02.048

    Article  Google Scholar 

  15. S. Madloch, M.C. Galetz, C. Geers, and M. Schütze, Development of a Metal Dusting Resistant Functional Coating by Sn and Al Pack Cementation, Surf. Coat. Technol., 2016, 299, p 29-36. https://doi.org/10.1016/j.surfcoat.2016.04.067

    Article  Google Scholar 

  16. L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu, Effect of Boron Addition on the Oxidation Resistance of Silicide Protective Coatings: A Focus on Boron Location in As-Coated and Oxidized Coated Niobium Alloys, Surf. Coat. Technol., 2014, 253, p 292-299. https://doi.org/10.1016/j.surfcoat.2014.05.058

    Article  Google Scholar 

  17. N. Chaia, S. Mathieu, F. Rouillard, and M. Vilasi, The Ability of Silicide Coating to Delay the Catastrophic Oxidation of Vanadium Under Severe Conditions, J. Nucl. Mater., 2015, 457, p 124-129. https://doi.org/10.1016/j.jnucmat.2014.11.015

    Article  ADS  Google Scholar 

  18. Z.D. Xiang, R. Rose, and P.K. Datta, Codeposition of Al and Si to form Oxidation-Resistant Coatings on γ-TiAl by the Pack Cementation Process, Mater. Chem. Phys., 2003, 80, p 482-489. https://doi.org/10.1016/S0254-0584(02)00551-5

    Article  Google Scholar 

  19. F.J.J. Van Loo and G.D. Rieck, Diffusion in the Titanium–Aluminium System—I. Interdiffusion Between Solid Al and Ti or Ti–Al Alloys, Acta Metall., 1973, 21(1), p 61-70. https://doi.org/10.1016/0001-6160(73)90220-4

    Article  Google Scholar 

  20. F.J.J. Van Loo and G.D. Rieck, Diffusion in the titanium–aluminium system—II. Interdiffusion in the composition range between 25 and 100 at.% Ti, Acta Metall., 1973, 21(1), p 73-83. https://doi.org/10.1016/0001-6160(73)90221-6

    Article  Google Scholar 

  21. J. Tardy and K.N. Tu, Solute Effect of Cu on Interdiffusion in Al3Ti Compound Films, Phys. Rev. B., 1985, 32(4), p 2070-2081. https://doi.org/10.1103/PhysRevB.32.2070

    Article  ADS  Google Scholar 

  22. J. Kral, M. Ferdinandy, D. Liska, and P. Diko, Formation of TiAl3 Layer on Titanium Alloys, Mater. Sci. Eng., 1991, 140, p 479-485. https://doi.org/10.1016/0921-5093(91)90466-Z

    Article  Google Scholar 

  23. T. Shimozaki, T. Okino, M. Yamane, Y. Wakamatsu, and M. Onishi, Effect of Diffusion Barrier and Impurities in Titanium on the Growth Rate of TiAl3 Layer, Defect Diffus. Forum, 1997, 143–147, p 591-596. https://doi.org/10.4028/www.scientific.net/DDF.143-147.591

    Article  Google Scholar 

  24. K. Nonaka, H. Fujii, and H. Nakajima, Effect of Oxygen in Titanium on Reaction Diffusion between Ti and Al, Mater. Trans., 2001, 42(8), p 1731-1740. https://doi.org/10.2320/matertrans.42.1731

    Article  Google Scholar 

  25. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of Intermetallic Layer in Multi-laminated Ti/Al Diffusion Couples, Mater. Sci. Eng., A, 2006, 435–436, p 638-647. https://doi.org/10.1016/j.msea.2006.07.077

    Article  Google Scholar 

  26. M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the Kinetics of TiAl3 Intermetallic Layer Formation in the Titanium and Aluminum Diffusion Couple, Intermetallics, 2013, 32, p 297-302. https://doi.org/10.1016/j.intermet.2012.08.017

    Article  Google Scholar 

  27. N. Chaia, C.M.F.A. Cossu, L.M. Ferreira, C.J. Parrisch, J.D. Cotton, G.C. Coelho, and C.A. Nunes, Protective Aluminide Coating by Pack Cementation for Beta 21-S Titanium Alloy, Corros. Sci., 2019, 160, p 108165. https://doi.org/10.1016/j.corsci.2019.108165

    Article  Google Scholar 

  28. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, New York, 1988

    Google Scholar 

  29. C. Wagner, The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Metall., 1969, 17, p 99-107. https://doi.org/10.1016/0001-6160(69)90131-X

    Article  Google Scholar 

  30. N. Chaia, L. Portebois, S. Mathieu, N. David, and M. Vilasi, On the Interdiffusion in Multilayered Silicide Coatings for the Vanadium-Based Alloy V-4Cr–4Ti, J. Nucl. Mater., 2017, 484, p 148-156. https://doi.org/10.1016/j.jnucmat.2016.11.027

    Article  ADS  Google Scholar 

  31. P. Kiruthika and A. Paul, A Pseudo-Binary Interdiffusion Study in the β-Ni(Pt)Al Phase, Philos. Mag. Lett., 2015, 95(3), p 138-144. https://doi.org/10.1080/09500839.2015.1020904

    Article  ADS  Google Scholar 

  32. V.A. Baheti, S. Islam, P. Kumar, R. Ravi, R. Narayanan, D. Hongqun, V. Vuorinen, T. Laurila, and A. Paul, Effect of Ni Content on the Diffusion-Controlled Growth of the Product Phases in the Cu(Ni)–Sn System, Philos. Mag., 2016, 96(1), p 15-30. https://doi.org/10.1080/14786435.2015.1119905

    Article  ADS  Google Scholar 

  33. S. Santra, S.K. Makineni, G. Shankar, S. Suwas, K. Chattopadhyay, S.V. Divinski, and A. Paul, Insight into the Effect of Ti-Addition on Diffusion-Controlled Growth and Texture of Nb3Sn Intermetallic Superconductor Phase, Materialia, 2019, 6, p 100276. https://doi.org/10.1016/j.mtla.2019.100276

    Article  Google Scholar 

  34. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, Nucleation and Growth of TiAl3 Intermetallic Phase in Diffusion Bonded Ti/Al Metal Intermetallic Laminate, Sci. Rep., 2018, 8, p 16797. https://doi.org/10.1038/s41598-018-35247-0

    Article  ADS  Google Scholar 

  35. U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti–Al System, Metall. Trans. A, 1992, 23A, p 2081-2090. https://doi.org/10.1007/BF02646001

    Article  ADS  Google Scholar 

  36. V.T. Witusiewicz, A.A. Bondar, U. Hechta, S. Rex, and T.Ya. Velikanova, The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti, J. Alloys Compd., 2008, 465, p 64-77. https://doi.org/10.1016/j.jallcom.2007.10.061

    Article  Google Scholar 

  37. O.K. Barin and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977

    Book  Google Scholar 

  38. D.M. Cupid, O. Fabrichnaya, F.E. Brahimi, and H.J. Seifert, Thermodynamic assessment of the Al-Mo system and of the Ti-Al-Mo System from 0 to 20 at.% Ti, Intermetallics, 2010, 18, p 1185-1196. https://doi.org/10.1016/j.intermet.2010.03.010

    Article  Google Scholar 

  39. V.T. Witusiewicz, A.A. Bondar, U. Hecht, and T.Y. Velikanova, The Al-B-Nb-Ti system IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems, J. Alloys Compd., 2009, 472, p 133-161. https://doi.org/10.1016/j.jallcom.2008.05.008

    Article  Google Scholar 

  40. J.S. Kirkaldy and D.J. Young, Diffusion in the condensed state, The institute of Metals, London, 1987

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors would like to thank the BOEING R&T Brazil for providing the Beta-21S plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chaia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaia, N., Cossu, C.M., Parrisch, C.J. et al. Growth Kinetics of TiAl3 Diffusion Coating by Pack Cementation on Beta 21-S. J. Phase Equilib. Diffus. 41, 181–190 (2020). https://doi.org/10.1007/s11669-020-00819-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00819-z

Keywords

Navigation