Skip to main content
Log in

Limited Content of Fe in Solid Solution Li(Ni, Mn, Co, Fe)O2: Polyhedron Homogeneity and Specific Capacity

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The samples with nominal compositions Li1.1(Ni0.33Mn0.33Co0.33)xFe1−xO2 (0 ≤ x ≤ 1) were synthesized by the starch-based gel combustion. The obtained samples had homogeneity composition Li1+yNi0.27Mn0.27Co0.27Fe0.20O2 in the solid solution with α-NaFeO2 structure based on the results of the x-ray phase analysis. The structure of stable homogeneity Li(Ni,Mn,Co,Fe)O2 can be represented as a pentahedron having the base Li1+yNiO2-Li1+yNi0.5Mn0.5O2-Li1+yCoO2 with Fe content limit ~ 15% of the total cation number. It is observed within the concentrations of tetrahedron consisting the pseudo-four-component system (Li1+yNiO2-Li1+yMnO2-Li1+yCoO2-Li1+yFeO2) upon set isobaric-isothermal conditions (T = 800 °C, PO2 = 21 kPa). The electrochemical testing of homogeneous samples such as Li1+yNi0.23Mn0.23Co0.30Fe0.23O2, Li1+yNi0.27Mn0.27Co0.20Fe0.27O2 and Li1+yNi0.30Mn0.23Co0.23Fe0.23O2 was carried out with almost the equimolar ratio of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 < x ≤1): A New Cathode Material for Batteries of High Energy Density, Mater. Res. Bull., 1980, 15, p 783-789

    Article  Google Scholar 

  2. S. Castro-Garsia, C. Julien, and M.A. Señaris-Rodriguez, Structural and Electrochemical Properties of Li–Ni–Co Oxides Synthesized by Wet Chemistry via a Succinic-Acid-Assisted Technique, Int. J. Inorg. Mater., 2001, 3, p 323-329

    Article  Google Scholar 

  3. C.R. Brown, E. McCalla, C. Watson, and J.R. Dahn, Combinatorial Study of the Li–Ni–Mn–Co Oxide Pseudoquaternary System for Use on Li–Ion Battery Materials Research, ASC Comb. Sci., 2015, 17, p 381-391

    Article  Google Scholar 

  4. K. Myoujin, T. Ogihara, K. Nakane, and N. Ogata, Synthesis and Characterization of Li[Ni(1/3-x)Mn(1/3-x)Co(1/3-x)Mx]O2 (M = Fe, Mg, Al) Particle by Aerosol Process, Key Eng. Mater., 2007, 350, p 203-206

    Article  Google Scholar 

  5. S.W.M.P.W.A.N.B. Weerakoon, T.H.N.G. Amaraweera, and H.W.M.A.C. Wijayasinghe, Synthesis and Electrical Characterization of Li(Ni1/3Co1/3-xMn1/3Mx)O2 (M = Fe,Al,Mg,Cu and x = 0.04, 008) for the Cathode of Li-Ion Rechargable Batteries, Annual Academic Sessions, The Open University of Sri Lanka (2013), p 1373–1376

  6. J. Wilcox, S. Patoux, and M. Doeff, Structure and Electrochemistry LiNi1/3Co1/3yMyMn1/3O2 (M = Ti, Al, Fe) Positive Electrode Materials, J. Electrochem. Soc., 2009, 156, p A192-A198

    Article  Google Scholar 

  7. Y. Idemoto and T. Matsui, Property, Electronic and Crystal Structures, Thermodynamic Stability, and Cathode Performance of Lix(Mn Co, Ni, M)O2 (M = Al, Ti, Fe) as a Cathode Active Material for Li Secondary Battery, Electrochemistry (Japan), 2007, 75, p 791-799

    Article  Google Scholar 

  8. P.B. Samarasingha, A. Wijayasinghe, M. Behm, L. Dissanayake, and G. Lindbergh, Development of Cathode Materials for Lithium Ion Rechargeable Batteries Based on the System Li(Ni1/3Mn1/3Co(1/3-x)Mx)O2 (M = Mg, Fe, Al and x = 0.00 to 0.33), Solid State Ion., 2014, 268, p 226-230

    Article  Google Scholar 

  9. Y.S. Meng, Y.W. Wu, B.J. Hwang, Y. Li, and G. Ceder, Combining Ab Initio Computation with Experiments for Designing New Electrode Materials for Advanced Lithium Batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2, J. Electrochem. Soc., 2004, 151, p A1134-A1140

    Article  Google Scholar 

  10. W. El Mofid, Dissertation. Synthesis and Characterization of Novel Cathode Material with Improved Specific Capacity and Safety for Lithium Ion Batteries (Techniscen Universität Ilmenau, 2016), p 121

  11. J.D. Wilcox, E.E. Rodrigues, and M.M. Doeff, The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li(Ni0.4Co0.2−yMyMn0.4)O2 Materials, J. Electrochem. Soc., 2009, 156, p A1011-A1018

    Article  Google Scholar 

  12. P.K. Nayak, J. Grinblat, M. Levi, O. Haik, E. Levi, and D. Aurbach, Effect of Fe in Suppressing the Discharge Voltage Decay of High Capacity Li-Rich Cathodes for Li-Ion Batteries, J. Solid State Electrochem., 2015, 19, p 781-2792

    Article  Google Scholar 

  13. H. Li, G. Chen, B. Zhang, and J. Xu, Advanced Electrochemical Performance of Li[Ni(1/3−x)FexCo1/3Mn1/3]O2, as Cathode Materials for Lithium-Ion Battery, Solid State Commun., 2008, 146, p 115-120

    Article  ADS  Google Scholar 

  14. J. Mohd Hilmi, M. Nor Sabirin, R. Yahya, and N. Kamarulzaman, Synthesis, Characterization and Charge-Discharge Profile of LiMn0.3Co0.3Ni0.3Fe0.1O2 Prepared via Sol-Gel Method, Adv. Mater. Res., 2012, 501, p 56-60

    Article  Google Scholar 

  15. J.-T. Son and E. Cairns, Structure and Electrochemical Characterization of LiNi0.3Co0.3Mn0.3Fe0.1O2 Cathode for Lithium Secondary Battery, Korean J. Chem. Eng., 2007, 24, p 888-891

    Article  Google Scholar 

  16. G.D. Nipan, M.N. Smirnova, M.A. Kop’eva, and G.E. Nikiforova, Gel Combustion Synthesis of Li(Ni, Mn Co, Fe)O2 Solid Solution, Russ. J. Inorgan. Chem., 2019, 64, p 1304-1308

    Article  Google Scholar 

  17. G.D. Nipan, M.N. Smirnova, M.A. Kopeva, G.E. Nikiforova, and N.P. Simonenko, Solid Solution Li(Ni, Mn, Co, Fe)O2 Homogeneity Range, J. Phase Equilib. Diffus., 2019, 40, p 725-731

    Article  Google Scholar 

  18. G.D. Nipan, M.N. Smirnova, DYu Kornilov, M.A. Kop’eva, G.E. Nikiforova, N.P. Simonenko, and S.P. Gubin, Solid Solution Having α-NaFeO2 Structure in the Li1+yCoO2–Li1+yMnO2–Li1+yNiO2–Li1+yFeO2 System, Russ. J. Inorgan. Chem., 2020, 65, p 573-580

    Article  Google Scholar 

  19. S.-W. Lee, H. Kim, M.-S. Kim, H.-C. Youn, K. Kang, B.-W. Cho, K.C. Roh, and K.-B. Kim, Improved Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Material Synthesized by Citric Acid Assisted Sol-Gel Method for Lithium Ion Batteries, J. Power Sources, 2016, 315, p 261-268

    Article  ADS  Google Scholar 

  20. X. Zhang, W.J. Jiang, A. Mauger, Qilu, F. Gendron, and C.M. Julien, Minimization of the Cation Mixing in Li1+x(NMC)1−xO2 as Cathode Material, J. Power Sources, 2010, 195, p 1292-1301

    Article  ADS  Google Scholar 

  21. W.H. Kan, A. Huq, and A. Manthiram, Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System, Chem. Mater., 2016, 28, p 1832-1837

    Article  Google Scholar 

  22. J. Zheng, T. Liu, Z. Hu, Y. Wei, X. Song, Y. Ren, W. Wang, M. Rao, Y. Lin, Z. Chen, J. Lu, C. Wang, K. Amine, and F. Pan, Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2, J. Am. Chem. Soc., 2016, 138, p 13326-13334

    Article  Google Scholar 

  23. A. Mahmoud, M. Yoshita, I. Saadoune, J. Broetz, K. Fujimoto, and S. Ito, LixCo0.4Ni0.3Mn0.3O2 Electrode Materials, Mater. Res. Bull., 2012, 47, p 1936-1941

    Article  Google Scholar 

  24. Z. Li, N.A. Chernova, M. Roppolo, S. Upreti, C. Petersburg, F.M. Alamgir, and M.S. Whittingham, Comparative Study of the Capacity and Rate Capability of LiNiyMnyCo1-2yO2 (y = 0.5, 0.45, 0.4, 0.33), J. Electrochem. Soc., 2011, 158, p A516-A522

    Article  Google Scholar 

  25. R. Alcantara, J.C. Jumas, P. Lavela, J. Olivier-Fourcade, C. Perez-Vicente, and J.L. Tirado, X-ray Diffraction, 57Fe Mössbauer and Step Potential Electrochemical Spectroscopy Study of LiFeyCo1-yO2 Compounds, J. Power Sources, 1999, 81–82, p 547-553

    Article  Google Scholar 

  26. E. Chappel, G. Chouteau, G. Prado, and C. Delmas, Magnetic Properties of LiNi1-yFeyO2, Solid State Ion., 2003, 159, p 273-278

    Article  Google Scholar 

  27. K. Karthikeyan, S. Amaresh, V. Aravindan, W.S. Kim, K.W. Nam, X.Q. Yang, and Y.S. Lee, Li(Mn1/3Ni1/3Fe1/3)O2–Polyaniline Hybrids as Cathode Active Material with Ultra-fast Charge–Discharge Capability for Lithium Batteries, J. Power Sources, 2013, 232, p 240-245

    Article  Google Scholar 

  28. A.E. Abdel-Ghany, A.M. Hashem, E.A. Elzahany, H.A. Abuzeid, S. Indris, K. Nikolowski, H. Ehrenberg, K. Zaghib, A. Mauger, and C.M. Julien, Structural Properties and Application in Lithium Cells of Li(Ni0.5Co0.5)1−yFeyO2 (0 ≤ y ≤ 0.25) Prepared by Sol–Gel Route: Doping Optimization, J. Power Sources, 2016, 320, p 168-179

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by IGIC RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Nipan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipan, G.D., Smirnova, M.N., Kornilov, D.Y. et al. Limited Content of Fe in Solid Solution Li(Ni, Mn, Co, Fe)O2: Polyhedron Homogeneity and Specific Capacity. J. Phase Equilib. Diffus. 41, 276–281 (2020). https://doi.org/10.1007/s11669-020-00818-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00818-0

Keywords

Navigation