Skip to main content

Study of Pt-Al-Nb Alloys Above 45 at.% Pt


Fourteen Pt-Al-Nb alloys were made by arc melting and studied in both the as-cast condition and after annealing at 1000 °C for 1000 h, using scanning electron microscopy with energy dispersive x-ray analysis, and x-ray diffraction. A modified electro-etching method was used to etch as-cast alloys which gave much clearer microstructures, by helping to remove the Al oxide scale on the surface. One ternary phase was found, Nb47.8Pt50.3Al1.9 (at.%). A solidification projection, liquidus projection surface and 1000 °C isothermal section were derived. The extensions into the ternary on solidification were: ~Nb2Pt: ~ 20 at.% Al; ~NbPt2: ~ 5 at.% Al; βNbPt3: ~ 4 at.% Al; ~PtAl: ~ 2 at.% Nb; ~Pt5Al3: ~ 5 at.% Nb; ~Pt3Al: ~ 10 at.% Nb; and β: ~ 30 at.% Nb. Ten invariant reactions were found on the liquidus surface. The samples were annealed at 1000 °C for 1000 h under air, and while some alloys showed phases with little reduction in extension, some alloys had oxidised to form (Pt) and the oxides of aluminium and niobium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34


  1. 1.

    C.T. Sims, N.S. Stollof, and W.C. Hagel, Superalloys II, Wiley Interscience, New York, 1987

    Google Scholar 

  2. 2.

    R.C. Reed, The Superalloys: Fundamental and Applications, Cambridge University Press, Cambridge, 2006

    Book  Google Scholar 

  3. 3.

    I.M. Wolff and P.J. Hill, Platinum Metals-Based Intermetallics for High Temperature Service, Platin. Met. Rev., 2000, 44(4), p 158-166

    Google Scholar 

  4. 4.

    B. Fischer, New Platinum Materials for High Temperature Application, Adv. Eng. Mater., 2001, 3(10), p 811-820

    Article  Google Scholar 

  5. 5.

    J.C. Zhao and J.H. Westbrook, Ultra High Temperature Materials for Jet Engines, MRS Bull., 2003, 28(9), p 622-627

    Article  Google Scholar 

  6. 6.

    L.A. Cornish, R. Suss, L.H. Chown, A. Douglas, and L. Glaner, The Platinum Development Initiative: Platinum-Based Alloys for High Temperature and Special Applications: Part 1, Platin. Met. Rev., 2009, 53(1), p 2-10

    Article  Google Scholar 

  7. 7.

    L.A. Cornish and L.H. Chown, Platinum Based Alloys and Coatings, in Advances in Gas Turbines 2011, InTech, 2011, Chapter 15 p 337-370

  8. 8.

    R. Suss, L.A. Cornish, P.J. Hill, and J. Hohls, in Proceedings of Advanced Materials and Processes for Gas Turbines (TMS, Copper Mountain, Colorado, USA, 2003), pp. 301–308.

  9. 9.

    R. Suss, L.A. Cornish, and A. Watson, Development of a Database for the Precipitation of Phases in Pt-Base Superalloys: Cr-Pt-Ru, Rare Met., 2006, 25(5), p 1-11

    Google Scholar 

  10. 10.

    B.O. Odera, L.A. Cornish, M.B. Shongwe, G.O. Rading, and M.J. Papo, As-Cast and Heat Treated Alloys of the Pt-Al-V System at the Pt-Rich Corner, J. S. Afr. Inst. Min. Metall., 2012, 7A, p 505-515

    Google Scholar 

  11. 11.

    B.O. Odera, L.A. Cornish, M.J. Papo, and G.O. Rading, Experimental Solidification Projection, Liquidus Surface Projection and Isothermal Section at 1000 °C for the Pt-Cr-V System, J. Phase Equilib. Diffus., 2014, 35(4), p 476-489

    Article  Google Scholar 

  12. 12.

    B.O. Odera, M.J. Papo, R. Couperthwaite, G.O. Rading, D. Billing, and L.A. Cornish, High-Order Additions to Platinum-Based Alloys for High Temperature Applications, J. S. Afr. Inst. Min. Metall., 2015, 115, p 241-250

    Article  Google Scholar 

  13. 13.

    P.J. Hill, L.A. Cornish, P. Ellis, and M.J. Witcomb, The Effects of Ti and Cr Additions on the Phase Equilibria and Properties of (Pt)/Pt3Al Alloys, J. Alloys Compd., 2001, 322, p 166-175

    Article  Google Scholar 

  14. 14.

    P.J. Hill, Y. Yamabe-Mitarai, H. Murakami, L.A. Cornish, M.J. Witcomb, I.M. Wolff, and H. Harada, The Precipitate Morphology and Lattice Mismatch of Ternary (Pt)/Pt3Al Alloys, in Third International Symposium on Structural Intermetallics, TMS, April 28May 2, 2002, pp. 527–533

  15. 15.

    C. Huang, Y. Yamabe-Mitarai, X.H. Yu, S. Nakazawa, and H. Harada, Partial Phase Relationships in Ir-Nb-Ni-Al and Ir-Nb-Pt-Al Quaternary Systems and Mechanical Properties of Their Alloys, Metall. Mater. Trans. A, 2005, 36A, p 539-545

    Article  ADS  Google Scholar 

  16. 16.

    C. Huang, Y. Yamabe-Miterai, and H. Harada, The Stabilization of Pt3Al Phase with L12 Structure in Pt-Al-Ir-Nb and Pt-Al-Nb Alloys, J. Alloys Compd., 2004, 366, p 217-221

    Article  Google Scholar 

  17. 17.

    M. Wenderoth, R. Völkl, S. Vorberg, Y. Yamabe-Mitarai, H. Harada, and U. Glatzel, Microstructure, Oxidation Resistance and High-Temperature Strength of γ′ Hardened Pt-Base Alloys, Intermetallics, 2007, 15(4), p 539-549

    Article  Google Scholar 

  18. 18.

    A.J. McAllister and D.J. Kahan, The Al-Pt (Aluminium-Platinum) System, Bull. Alloys Phase Diagr., 1986, 7(1), p 47-51

    Article  Google Scholar 

  19. 19.

    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio, 1990

    Google Scholar 

  20. 20.

    R. Huch and W. Klemm, Das System Platin-Aluminium, Z. Anorg. Allg. Chem., 1964, 29, p 123-125 (in German)

    Article  Google Scholar 

  21. 21.

    A.S. Darling, G.L. Selman, and R. Rushforth, Pt and the Refractory Oxides III—Constitutional Relations in the Alloys Formed, Platin. Met. Rev., 1970, 14, p 124-130

    Google Scholar 

  22. 22.

    T. Chattopaddhayay and K. Schubert, Kristallstruktur von Pt3GA(r) und Einigen Phasen der Mischung Pt-Al, J. Less Common Met., 1975, 41, p 19-32

    Article  Google Scholar 

  23. 23.

    T. Chattopaddhayay and K. Schubert, Crystal Structure of Pt 2 Al. r, J. Less Common Met., 1976, 41, p 79-83

    Article  Google Scholar 

  24. 24.

    S. Bhan and H. Kudielka, Ordered Bcc Phases at High Temperatures in Alloys of Transition Metals and B-subgroup Elements. Z. Met., 1978, 69, p 333-334 (in German)

    ADS  Google Scholar 

  25. 25.

    G. Piatti and G. Pellegrim, The Structure of the Unidirectionally Solidified Al-Al21Pt5 Eutectic Alloys, J. Mater. Sci., 1980, 15, p 2403-2408

    Article  ADS  Google Scholar 

  26. 26.

    D.G. Pettifor, The Structures of Binary Compounds. I. Phenomenological Structure Maps, J. Phys. C, 1986, 19, p 285-313

    Article  ADS  Google Scholar 

  27. 27.

    Y. Oya, U. Mishima, and T. Suzuki, L12-D0c Martensite Transformation in Pt3Al and Pt3Ga, Z. Met., 1987, 78(7), p 485-490

    Google Scholar 

  28. 28.

    Y. Mishima, Y. Oya, and T. Suzuki, L12↔D0c Martensitic Transformation in Pt3Al and Pt3Ga, in Proceedings of the International Conference on Martensitic Transformations (JIM, 1986), pp. 1009–1014.

  29. 29.

    A. Douglas, J.H. Neethling, R. Santamarta, D. Schryvers, and L.A. Cornish, Unexpected Ordering Behaviour of Pt3Al Intermetallic Precipitates, J. Alloys Compd., 2007, 432, p 96-102

    Article  Google Scholar 

  30. 30.

    C.E. Lundin and A.S. Yamamoto, The Equilibrium Phase Diagram, Niobium (Columbium)–Aluminum, Trans. AIME, 1966, 237, p 863-872

    Google Scholar 

  31. 31.

    V.N. Svechnikov, V.M. Pan, and V.I. Lateiesheva, Diagramma sostoyanij sistemy Niobij-Alyuminij (The Constitution Diagram of a System Niobium–Aluminium), Metallofizika, 1968, 2, p 54-61 (in Russian)

    Google Scholar 

  32. 32.

    V.N. Yermenko, Ya.V. Natanzon, and V.I. Dybkov, Interaction of the Refractory Metals with Liquid Aluminium, J. Less Common Met., 1976, 50, p 29-48

    Article  Google Scholar 

  33. 33.

    J.L. Jorda, R. Fluekiger, and J. Muller, A New Metallurgical Investigation of the Niobium-Aluminium System, J. Less Common Met., 1980, 75, p 227-239

    Article  Google Scholar 

  34. 34.

    R.M. Waterstat and B.C. Giessen, The Niobium (Columbium)-Platinum Constitution Diagram, Metall. Mater. Trans. A, 1985, 16(11), p 1943-1949

    Article  ADS  Google Scholar 

  35. 35.

    P.R. Subramanian and J.P. Simmons, Phase Equilibria in the Vicinity of the DO22 AI3Nb Composition in the AI-Nb-W, AI-Nb-Co, AI-Nb-Pt, and AI-Nb-Ag Systems, Scr. Metall. Mater., 1991, 25, p 231-236

    Article  Google Scholar 

  36. 36.

    G.F. Ndlovu, L.A. Cornish, B. Julies, and B. Joja, Characterisation of Pt-Rich Alloys in the Pt-Al-Nb System, Proc. Microsc. Soc. S. Afr., 2006, 36, p 11

    Google Scholar 

  37. 37.

    G.F. Ndlovu, Microstructural Study of the Pt-Al-Nb Phase Diagram. M.Sc. dissertation, University of the Western Cape, Cape Town (2006).

  38. 38.

    S. Samal and L.A. Cornish, Characterisation of Pt-Rich ALLOYS in the Pt-Al-Nb System, Proc. Microsc. Soc. S. Afr., 2010, 4, p 50

    Google Scholar 

  39. 39.

    K. Dyal Ukabhai and L.A. Cornish, Microstructural Study of As-Cast Al-Nb-Pt Alloys, Proc. Microsc. Soc. S. Afr., 2016, 46, p 15

    Google Scholar 

  40. 40.

    K. Dyal Ukabhai, Microstructural Study of Al-Nb-Pt Alloys, in 4th Year Research Project Report, University of the Witwatersrand (2016).

  41. 41.

    Kgetjepe Nape, Phase Analyses in Pt-Al-Nb Alloys, in 4th year Research Project Report, University of the Witwatersrand (2017).

  42. 42.

    B.O. Odera, L.A. Cornish, M.J. Papo, and G.O. Rading, Electrolytic Etching of Platinum-Aluminium based alloys, Platin. Met. Rev., 2012, 56(4), p 257-261

    Article  Google Scholar 

  43. 43.

    P. Battaini, Electrolytic Etching for Microstructure Detection in Platinum Alloys, Platin. Met. Rev., 2011, 55(1), p 71-72

    Article  Google Scholar 

  44. 44.

    International Centre for Diffraction Data (ICDD), Powder Diffraction File (2001), Pennsylvania, USA.

  45. 45.

    S.N. Prins, L.A. Cornish, and P. Boucher, Derivation of the Liquidus Surface Projection for the Al-Pt-Ru System from As-Cast Samples, J. Alloys Compd., 2005, 403, p 245-257

    Article  Google Scholar 

  46. 46.

    P.J. Hill, T. Biggs, P. Ellis, J. Hohls, S. Taylor, and I.M. Wolff, An Assessment of Ternary Precipitation Strengthened Pt Alloys for Ultra-High Temperature Applications, Mater. Sci. Eng., A, 2001, 301, p 167-179

    Article  Google Scholar 

Download references


The authors would like to acknowledge Dr Clive Oliphant, NIMISA for earlier SEM analyses, Mr Shadrack Moqabulane for assistance with metallography, and Mr Brayner Ndivhuwo Nelwalani for helping with SEM analysis. The authors thank the University of the Witwatersrand and the Advanced Materials Division, Mintek for access to research facilities. The Department of Science and Innovation (formerly the Department of Science and Technology) and National Research Foundation are thanked for financial support.

Author information



Corresponding author

Correspondence to L. A. Cornish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of Günter Effenberg. The special issue was organized by Andrew Watson, Coventry University, Coventry, United Kingdom. Svitlana Iljenko, MSI, Materials Science International Services GmbH, Stuttgart, Germany and Rainer Schmid-Fetzer, Clausthal University of Technology, Clausthal-Zellerfield, Germany.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ndlovu, G.F., Ukabhai, K.D., Nape, K.T. et al. Study of Pt-Al-Nb Alloys Above 45 at.% Pt. J. Phase Equilib. Diffus. 41, 391–417 (2020).

Download citation


  • experimental phase equilibria
  • liquidus surface
  • phase diagram
  • platinum
  • ternary phase diagram