Skip to main content
Log in

Phase Equilibria of the Fe-Mo-Ta Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase equilibria of the Fe-Mo-Ta ternary system at 800 and 1000 °C have been experimentally investigated. The various phases in the alloys after annealing at 800 °C for 60 days and 1000 °C for 45 days were examined using scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Two three-phase regions were confirmed at 800 °C and two three-phase fields at 1000 °C. No ternary phase was observed in any of the alloys. The experimental results indicated that the solubility of Mo in the Fe7Ta6 phase and that of Ta in the Fe7Mo6 are large. The solubility of Mo in Fe7Ta6 is 16.5 at.% at 800 °C and 19.2 at.% at 1000 °C. In contrast, the solubility of Ta in Fe7Mo6 is 29.3 at.% at 800 °C and 15.7 at.% at 1000 °C. In addition, Fe2Ta and Fe2Mo can combine as a continuous solid solution, denoted as Fe2(Mo, Ta), in the 800 °C isothermal section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, Quantification of the Laves Phase in Advanced 9%–12% Cr Steels Using a Standard SEM, Mater. Charact., 2003, 51, p 341-352

    Article  Google Scholar 

  2. H. Cui, F. Sun, K. Chen, L. Zhang, R. Wan, A. Shan, and J. Wu, Precipitation Behavior of Laves Phase in 10% Cr Steel X12CrMoWVNbN10-1-1 During Short-Term Creep Exposure, Mater. Sci. Eng. A, 2010, 527(29–30), p 7505-7509

    Article  Google Scholar 

  3. H.K. Lo, New Observations of Electron Domains in Fe-Cr-Ni-Mo Duplex Alloy, Mater. Lett., 2015, 142, p 262-264

    Article  Google Scholar 

  4. S. Zhang, H. Fang, M.E. Gramsma et al., Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys, Metall. Mater. Trans. A, 2016, 47(10), p 4831-4844

    Article  Google Scholar 

  5. Y. Ying, L. Tan, and J.T. Busby, Thermal Stability of Intermetallic Phases in Fe-Rich Fe-Cr-Ni-Mo Alloys, Metall. Mater. Trans. A, 2015, 46(9), p 3900-3908

    Article  Google Scholar 

  6. X. Liu, F.C. Yin, J. Lou et al., Improving Corrosion Resistance of Ferrous Alloy to Molten Zn by Modifying the Laves Phase Characteristics, JOM, 2017, 8, p 2457-2462

    Google Scholar 

  7. S. Ishikawa, T. Matsuo, M. Takeyama, Phase Equilibria Among α -Fe, γ-Fe and Fe2Mo Phases and Stability of the Laves Phase in Fe-Mo-Ni Ternary System at Elevated Temperatures. In: MRS Proceedings, 2006, 980

  8. X. Zhai, S. Liu, and Y. Zhao, Effect of Tantalum Content on Microstructure and Tensile Properties of CLAM Steel, Fusion Eng. Des., 2016, 104, p 21-27

    Article  Google Scholar 

  9. Y. Minamino, T. Yamane, H. Araki, A. Hiraki, and Y. Miyamoto, Phase Diagram of Fe Rich Side of Fe-Mo System Under High Pressure, J. Iron Steel Inst. Jpn., 1988, 74(4), p 733-740

    Article  Google Scholar 

  10. O. Kubaschewski and T. Hoster, Enthalpy of Formation and Transformation in Binary and Ternary Systems of the Metals Iron, Cobalt, Nickel and Molybdenum, Z. Meta Ilkd., 1983, 74(9), p 607-609

    Google Scholar 

  11. V.B. Rajkumar and K.C. Hari Kumar, Thermodynamic Modeling of the Fe-Mo System Coupled with Experiments and AB Initio Calculations, J Alloys Compd, 2014, 611, p 303-312

    Article  Google Scholar 

  12. E. Ichise, T. Maruo, H. Sasho, Y. Ueshima, and T. Mori, Knudsen Cell-Mass Spectrometric Determination of Activities in Fe-Mo Alloys, J. Iron Steel Inst. Jpn., 1980, 66(8), p 1075-1083

    Article  Google Scholar 

  13. Y. Iguchi, S. Nobori, K. Saito, and T. Fuwa, A Calorimetric Study of Heats of Mixing of Liquid Iron Alloys Fe-Cr, Fe-Mo, Fe-W, Fe-V, Fe-Nb, Fe-Ta, J. Iron Steel Inst. Jpn., 1982, 68, p 633-640

    Article  Google Scholar 

  14. V.S. Sudavtsova, V.P. Kurach, and G.I. Batalin, Thermochemical Properties of Molten Binary Fe-(Y, Zr, Nb, Mo) Alloys, Russ. Metall., 1987, 3, p 59-60

    Google Scholar 

  15. H. Kleykamp and V. Schauer, Phase Equilibria and Thermodynamics in the Fe-Mo and Fe-Mo-O Systems, J. Less-Common Met., 1981, 81(2), p 229-238

    Article  Google Scholar 

  16. J. Houserová, J. Vřešťál, and M. Šob, Phase Diagram Calculations in the Co-Mo and Fe-Mo Systems Using First-Principles Results for the Sigma Phase, Calphad, 2005, 29(2), p 139

    Article  Google Scholar 

  17. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams (2nd ed.), ASM International, Materials Park, Ohio, USA, 1990

  18. L.J. Swartzendruber and E. Paul, The Fe-Ta (Iron-Tantalum) System, Bull. Alloy Phase Diagrams, 1986, 7, p 254-259

    Article  Google Scholar 

  19. S. Srikanth and A. Petric, Optimization and Calculation of the Fe-Ta Phase Diagram, J. Alloys Compd., 1994, 203(1–2), p 281-288

    Article  Google Scholar 

  20. X. OuYang, F. Yin, J. Hu et al., Experimental Investigation and Thermodynamic Calculation of the B-Fe-Mo Ternary System, Calphad, 2017, 59, p 189-198

    Article  Google Scholar 

  21. A. Danon and C. Servant, Contribution to a Thermodynamic Database and Phase Equilibria Calculations for Low Activation Ta-Containing Steels, J. Nucl. Mat., 2003, 321(1), p 8-18

    Article  ADS  Google Scholar 

  22. G.C. Coelho, J.G. Costa Neto, S. Gama, and C.A. Ribeiro, Experimental Study of the Iron-Tantalum Equilibrium Diagram, J. Phase Equilib., 1995, 16, p 121-128

    Article  Google Scholar 

  23. V.B. Rajkumar and K.C.H. Kumar, Gibbs Energy Modeling of Fe-Ta System by Calphad Method Assisted by Experiments and ab Initio Calculations, Calphad, 2015, 48, p 157-165

    Article  Google Scholar 

  24. V.T. Witusiewicz, A.A. Bondar, U. Hecht et al., Experimental Study and Thermodynamic Re-assessment of the Binary Fe-Ta System, Intermetallics, 2011, 19(7), p 1059-1075

    Article  Google Scholar 

  25. L. Kaufman, Coupled Thermochemical and Phase Diagram Data for Tantalum Based Binary Alloys, Calphad, 1991, 15, p 243-259

    Article  Google Scholar 

  26. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Mattens, and A.R. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II, Calphad, 1983, 7, p 51-70

    Article  Google Scholar 

  27. Y. Cui, X. Lu, and Z. Jin, Experimental Study and Thermodynamic Assessment of the Ni-Mo-Ta Ternary System, Metall. Mater. Trans., 1999, 30A, p 2735-2744

    Article  Google Scholar 

  28. H. Okamoto, The Mo-Ta System, J. Phase Equilib., 1991, 12, p 616-617

    Article  Google Scholar 

  29. F. Guillemot, M. Boliveau, M. Bohn et al., On the Diffusion in the Mo-Ta Refractory System, Int. J. Refract. Met. H., 2001, 19(3), p 183-189

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51771160), Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2016JC2005), and the Key Project of the Education Department of Hunan Province (No. 15A179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.M., Liu, E.L., Yin, F.C. et al. Phase Equilibria of the Fe-Mo-Ta Ternary System. J. Phase Equilib. Diffus. 40, 413–422 (2019). https://doi.org/10.1007/s11669-019-00738-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00738-8

Keywords

Navigation