Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 3, pp 403–412 | Cite as

Multiphase Characterization of Phase Equilibria in the Tb-Rich Corner of the Co-Cu-Tb System

  • Pavel A. ProkofevEmail author
  • Natalia B. Kolchugina
  • Gennady S. Burkhanov
  • Alexander A. Lukin
  • Yuri S. Koshkid’ko
  • Katerina Skotnicova
  • Tomas Cegan
  • Ondrej Zivotsky
  • Miroslav Kursa
  • Henrik Drulis
  • Alisia Hackemer
Article
  • 41 Downloads

Abstract

In recent years, the grain-boundary diffusion (GBD) and grain-boundary restructuring processes used in manufacturing Nd-Fe-B magnets show promise as procedures that allow one to increase their hysteretic characteristics. The processes are realized by adding various amounts of heavy-rare-earth metals (in the form of hydrides, oxides, intermetallic compounds, etc.) to powder mixtures. The additions decompose or melt during subsequent heat treatment, and their components diffuse into grains and remain within the grain-boundary phase and thus, increase the anisotropy field of the main-magnetic (Nd2Fe14B-based) phase and improve the grain-boundary structure, respectively. In the present study, we consider alloys near the Tb3(Co0.6Cu0.4) composition as such an addition, which is of importance in designing the microstructure of Nd-Fe-B permanent magnets allowing us to economically alloy them with terbium (via GBD) simultaneously making copper and cobalt parts of the magnet composition. The phase equilibria in the Tb-rich corner of the Co-Cu-Tb system near the Tb3(Co0.6Cu0.4) composition, which was found to be multiphase, are assessed based on electron microscopy studies, data from electron microprobe, x-ray diffraction, and differential thermal analyses, and from magnetic measurements. A portion of the isothermal section for compositions Tb-40 at.% Co-50 at.% Cu at 600°C was constructed. The copper solubility in Tb3(Co,Cu) and Tb12(Co,Cu)7, and Co solubility in the Tb(Cu,Co) compound were determined, which are up to 6.5, 14.5, and 10 at.%, respectively. The possibility of hydrogenation of the multiphase composition with the formation of TbHx, and fine Co and Cu powders, which are components for diffusion in manufacturing permanent magnets, is demonstrated.

Keywords

Co-Cu-Tb system copper solubility grain boundary diffusion Nd-Fe-B magnets partial isothermal section phase equilibria Tb-rich corner 

Notes

Acknowledgments

We sincerely thank Dr. Bochvar N.R. for the useful discussion of the obtained results and Dr. A. Watson for his assistance in preparing the manuscript. This study was supported financially by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.616.21.0093 (Unique Identification Number RFMEFI61618X0093) and the Ministry of Education, Youth, and Sports of the Czech Republic, Project No. LTARF18031. Structural studies were performed using research infrastructure of the Centre of Collaborative Access for Functional Nanomaterials and High-Purity Substances, Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences and of the Regional Materials Science and Technology Centre, VSB-TU, Ostrava (Czech Republic).

References

  1. 1.
    K. Löewe, C. Brombacher, M. Katter, and O. Gutfleisch, Temperature-Dependent Dy Diffusion Process in Nd-Fe-B Permanent magnets, Acta Mater., 2015, 83, p 248-255CrossRefGoogle Scholar
  2. 2.
    W.Q. Liu, H. Sun, X.F. Yi, X.C. Liu, D.T. Zhang, M. Yue, and J.X. Zhang, Coercivity Enhancement in Nd–Fe–B Sintered Permanent Magnet by Dy Nanoparticles Doping, J. Alloys Compd., 2010, 501, p 67-69CrossRefGoogle Scholar
  3. 3.
    M. Ishimaru, M. Itakura, M. Nishida, M. Nakano, and H. Fukunaga, Microstructure Analysis of High Coercitivity PLD-made Nd-Fe-B Thick-Film Improved by Tb-Coating-Diffusion Treatment, Mater. Trans., 2010, 51, p 1939-1943CrossRefGoogle Scholar
  4. 4.
    L. Liang, T. Man, P. Zhang, J. Jin, and M. Yan, Coercivity Enhancement of NdFeB Sintered Magnets by Low Melting Point Dy32.5Fe62Cu5.5 Alloy Modification, J. Magn. Magn. Mater., 2014, 355, p 131-135ADSCrossRefGoogle Scholar
  5. 5.
    X. Liu, X. Wang, L. Liang, P. Zhang, J. Jin, J. Zhang, T. Man, and M. Ann, Rapid Coercivity Increment of Nd–Fe–B Sintered Magnets by Dy69Ni31 Grain Boundary Restructuring, J. Magn. Magn. Mater., 2014, 370, p 76-80ADSCrossRefGoogle Scholar
  6. 6.
    H. Sepehri-Amin, L. Liu, T. Ohkubo, M. Yano, T. Shoji, A. Kato, T. Schrefl, and K. Hono, Microstructure and Temperature Dependent of Coercivity of Hot-Deformed Nd–Fe–B Magnets Diffusion Processed with Pr–Cu Alloy, Acta Mater., 2015, 99, p 297-306CrossRefGoogle Scholar
  7. 7.
    S. Nishio, S. Sugimoto, R. Goto, M. Matsuura, and N. Tezuka, Effect of Cu Addition on the Phase Equilibria in Nd-Fe-B Sintered Magnets, Mater. Trans., 2008, 50(4), p 723-726CrossRefGoogle Scholar
  8. 8.
    S. Nishio, R. Goto, M. Matsuura, N. Tezuka, and S. Sugimoto, Wettability Between Nd2Fe14B and Nd-Rich Phase in Nd-Fe-B Alloy System, J. Jpn. Inst. Met., 2008, 72(12), p 1010-1014CrossRefGoogle Scholar
  9. 9.
    R. Goto, S. Nishio, M. Matsuura, S. Sugimoto, and N. Tezuka, Wettability and Interfacial Microstructure Between Nd2Fe14B and Nd-Rich Phases in Nd–Fe–B Alloys, IEEE Trans. Magn., 2008, 44, p 4232-4234ADSCrossRefGoogle Scholar
  10. 10.
    X.G. Cui, M. Yan, T.Y. Ma, and L.Q. Yu, Effects of Cu Nanopowders Addition on Magnetic Properties and Corrosion Resistance of Sintered Nd–Fe–B Magnets, Phys. B, 2008, 403, p 4182-4185ADSCrossRefGoogle Scholar
  11. 11.
    Y.L. Liu, J. Liang, YCh He, Y.F. Li, G.F. Wang, Q. Ma, F. Liu, Y. Zhang, and X.F. Zhang, The Effect of CuAl Addition on the Magnetic Property, Thermal Stability and Corrosion Resistance of the Sintered NdFeB Magnets, AIP Adv., 2018, 8, p 056227ADSCrossRefGoogle Scholar
  12. 12.
    T.-H. Kim, S.-R. Lee, J.W. Kim, Y.D. Kim, H.-J. Kim, M.-W. Lee, and T.-S. Jang, Optimization of the Post-Sintering Annealing Condition for the High Cu Content Nd-Fe-B Sintered Magnet, J. Appl. Phys., 2014, 115, p 17A770-3Google Scholar
  13. 13.
    M. Ge Pan, H. Pengyue, Z. Zhu, J. Jiao, and Z. Zhao, Effects of Cobalt Addition on the Coercivity of Sintered NdFeB Magnets Prepared by HD Method, Zhongguo Xitu Xuebao, 2010, 28, p 247-251Google Scholar
  14. 14.
    H. Zhong, Y. Fu, G. Li, T. Liu, W. Cui, W. Liu, Z. Zhang, and Q. Wang, Enhanced Coercivity Thermal Stability Realized in Nd–Fe–B Thin Films Diffusion-Processed by Nd–Co Alloys, J. Magn. Magn. Mater., 2017, 426, p 550-553ADSCrossRefGoogle Scholar
  15. 15.
    M.-W. Lee, K.-H. Bae, S.-R. Lee, H.-J. Kim, and T.-S. Jang, Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed DyCo Alloy-Powder, Arch. Metall. Mater., 2017, 62(2B), p 1263-1266CrossRefGoogle Scholar
  16. 16.
    A. Kianvash, R.S. Mottram, and I.R. Harris, Densification of Nd13Fe78NbCoB7-type Sintered Magnet by (Nd, Dy)-Hydride Additions Using a Powder Blending Technique, J. Alloys Compd., 1999, 287, p 206-214CrossRefGoogle Scholar
  17. 17.
    T.-H. Kim, S.-R. Lee, H.-J. Kim, M.-W. Lee, and T.-S. Jang, Magnetic and Microstructural Modification of the Nd–Fe–B Sintered Magnet by Mixed DyF3/DyHx Powder Doping, J. Appl. Phys., 2014, 115(17), p 17A763-3CrossRefGoogle Scholar
  18. 18.
    A. Lukin, N.B. Kolchugina, G.S. Burkhanov, N.E. Klyueva, and K. Skotnicova, Role of Terbium Hydride Additions in the Formation of Microstructure and Magnetic Properties of Sintered Nd-Pr-Dy-Fe-B Magnets, Inorgan Mater. Appl. Res., 2013, 4, p 256-259CrossRefGoogle Scholar
  19. 19.
    G.S. Burkhanov, N.B. Kolchugina, A.A. Lukin, Y.S. Koshkidko, J. Cwik, K. Skotnicova, and V.V. Sitnov, Structure and Magnetic Properties of Nd–Fe–B Magnets Prepared from DyH2-Containing Powder Mixtures, Inorgan Mater Appl Res, 2018, 9(3), p 509-516CrossRefGoogle Scholar
  20. 20.
    G. S. Burkhanov, N. B. Kolchugina, Y. S. Koshkid`ko, J. Cwik, K. Skotnicova, T. Cegan, P. A. Prokof`ev, H. Drulis, A. Hackemer, Structure and Phase Composition of Tb3Co0.6Cu0.4 Alloys for Efficient Additions to Nd-Fe-B Sintered Magnets, METAL 2017 Confernce Proceedings, 24-26 May 2017, Tanger Ltd., Brno, Czech Republiuc, EU, p 1775-1781.Google Scholar
  21. 21.
    Y. Zhang, T. Ma, X. Liu, P. Liu, J. Jin, J. Zou, and M. Yan, Coercivity Enhancement of Nd-Fe-B Sintered Magnets with Intergranular Adding (Pr, Dy, Cu) − Hx Powders, J. Magn. Magn. Mater., 2016, 399, p 159-163ADSCrossRefGoogle Scholar
  22. 22.
    N. Kolchugina, T. Dobatkina, Co-Cu-Tb Ternary Phase Diagram Evaluation, In MSI Eureka, Effenberg, G. (Ed.), MSI, Materials Science International, Stuttgart (2017), Document ID: 10.36935.1.4.Google Scholar
  23. 23.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., The Materials Information Society, Materials Park, 1990, p 2Google Scholar
  24. 24.
    P.R. Subramanian, D.J. Chakrabarti, and D.E. Laughlin, , Phase Diagrams of Binary Copper Alloys, ASM International, Materials Park, 1990, p 1-3Google Scholar
  25. 25.
    R. Tetean, E. Burzo, and I.G. Deac, Magnetic Properties of Cobalt in TbCo3−xCu x Intermetallic Compounds, J. Alloys Compd., 2007, 442, p 206-208CrossRefGoogle Scholar
  26. 26.
    A. Bezergheanu, R. Grasin, and R. Tetean, Magnetic Properties and Magnetocaloric Effect in Tb8Co16−xCux Compounds, Stud. Univ. Babes-Bolyai Phys., 2011, 56(2), p 39-46Google Scholar
  27. 27.
  28. 28.
  29. 29.
    O.I. Kharchenko, Ternary (Y,Ce)-Co-Cu Systems, Vestn. L’vovskogo Univ., Ser. Khimicheskaya, 1981, 23, p 58–61 (in Russian)Google Scholar
  30. 30.
    G.G. Devyatykh and G.S. Burkhanov, High-Purity Refractory and Rare-Earth Metals, International Science Publishing, Cambridge, 1997Google Scholar
  31. 31.
    K.H.J. Buschow and A.S. Van Der Goot, The Crystal Structure of Rare-earth Cobalt Compounds of the Type R3Co, J. Less Common Met., 1969, 18(3), p 309-311CrossRefGoogle Scholar
  32. 32.
    W. Adams, J.-M. Moreau, E. Parthé, and J. Schweizer, R12Co7 Compounds with R = Gd, Tb, Dy, Ho, Er, Acta Cryst., 1976, B32, p 2697-2699CrossRefGoogle Scholar
  33. 33.
  34. 34.
    N.V. Baranov, A.F. Gubkin, A.P. Vokhmyanin, A.N. Pirogov, A. Podlesnyak, L. Keller, N.V. Mushnikov, and M.I. Bartashevich, High-Field Magnetization and Magnetic Structure of Tb3Co, J. Phys. Condens. Matter, 2001, 19, p 326213CrossRefGoogle Scholar
  35. 35.
    M.R. Ibarra, P.A. Algarabel, and A.S. Pavlovic, High-Field Magnetostriction of TbCu, DyCu and HoCu, J. Appl. Phys., 1990, 67, p 4814ADSCrossRefGoogle Scholar
  36. 36.
    J.Q. Deng, Y.H. Zhuang, J.Q. Li, and J.L. Huang, Magnetic Properties of Tb12Co7, Physica B, 2007, 391(2), p 331-334ADSCrossRefGoogle Scholar
  37. 37.
    W.C. Koehler, H.R. Child, E.O. Wollan, and J.W. Cable, Some Magnetic Structure Properties of Terbium and of TerbiumYttrium Alloys, J. Appl. Phys., 1963, 34, p 1335ADSCrossRefGoogle Scholar
  38. 38.
    N.V. Mushnikov, A.Y. Yermakov, N.K. Zajkov, and A.K. Shtolz, Hydrogen-Induced Decomposition in Pr(Co1−xCux)5 Intermetallic Compounds, J. Alloys Compd., 1997, 260, p 12-16CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Pavel A. Prokofev
    • 1
    • 2
    Email author
  • Natalia B. Kolchugina
    • 1
  • Gennady S. Burkhanov
    • 1
  • Alexander A. Lukin
    • 2
  • Yuri S. Koshkid’ko
    • 1
    • 3
  • Katerina Skotnicova
    • 4
  • Tomas Cegan
    • 4
  • Ondrej Zivotsky
    • 4
  • Miroslav Kursa
    • 4
  • Henrik Drulis
    • 3
  • Alisia Hackemer
    • 3
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.“JSC SPETSMAGNIT”MoscowRussia
  3. 3.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland
  4. 4.Vysoka Skola Banska - Technical University of OstravaOstravaCzech Republic

Personalised recommendations