Advertisement

Simulation of Precipitation Kinetics with Non-Spherical Particles

Article

Abstract

A kinetic model that is modified based on Langer and Schwartz theory has been developed to treat precipitation kinetics of non-spherical precipitates. Three types of particle morphology, cuboid, needle and plate, have been treated. Explicitly accounting for coherent elastic strain energy and interfacial energy anisotropy, the model enables the prediction of equilibrium particle morphology. The shape effect on growth kinetics has also been investigated assuming quasi steady-state and shape preserving conditions. Validations against a couple of practical examples have shown reasonable agreements, though care must be taken due to uncertainties from model limitations and discrepancies in experimental data.

Keywords

kinetics microstructure modeling multicomponent phase transformation precipitation 

Notes

Acknowledgment

The first author (KW) would like to thank Dr. Qiang Du of SINTEF Materials and Chemistry, Trondheim, Norway for the valuable discussions. The theoretical guidance from QuestTek LLC through the close collaboration is also greatly appreciated. In celebrating his 80th birthday, the authors (KW and QC) are deeply grateful to Prof. Zhanpeng Jin, a lifetime mentor, for his continuing guidance and support throughout our career.

References

  1. 1.
    CALPHAD. www.calphad.org. Accessed 2018
  2. 2.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970Google Scholar
  3. 3.
    N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comperhensive Guide, Elsevier Science Ltd., New York, 1998Google Scholar
  4. 4.
    J.S. Langer and A.J. Schwartz, Kinetics of Nucleation in Near-Critical Fluids, Phys. Rev. A, 1980, 21(3), p 948-958ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    I.M. Lifshitz and V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 15, p 35CrossRefGoogle Scholar
  6. 6.
    C. Wagner, Theorie Der Alterung Von Niederschlägen Durch Umlösen (Ostwald-Reifung), Z. Elektrochem., 1961, 65, p 581Google Scholar
  7. 7.
  8. 8.
    F.S. Ham, Theory of Diffusion-Limited Precipitation, J. Phys. Chem. Solids, 1958, 6(4), p 335-351ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F.S. Ham, Shape-Preserving Solutions of the Time-Dependent Diffusion Equation, Q. Appl. Math., 1959, 17(2), p 137-145MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    J.D. Boyd and R.B. Nicholson, The Coarsening Behaviour of θ” and θ’ Precipitates in Two Al-Cu Alloys, Acta Metall., 1971, 19(12), p 1379-1391CrossRefGoogle Scholar
  11. 11.
    Q. Du, B. Holmedal, J. Friis, and C.D. Marioara, Precipitation of Non-Spherical Particles in Aluminum Alloys Part II: Numerical Simulation and Experimental Characterization During Aging Treatment of an Al-Mg-Si Alloy, Metall. Mater. Trans. A, 2016, 47(1), p 589-599CrossRefGoogle Scholar
  12. 12.
    B. Holmedal, E. Osmundsen, and Q. Du, Precipitation of Non-Spherical Particles in Aluminum Alloys Part I: generalization of the Kampmann-Wagner Numerical Model, Metall. Mater. Trans. A, 2016, 47(1), p 581-588CrossRefGoogle Scholar
  13. 13.
    Precipitation Module (TC-PRISMA) User Guide. http://www.thermocalc.com/media/40970/precipitation-module-tc-prisma-user-guide.pdf. Accessed 2018
  14. 14.
    R. Kampmann and R. Wagner, Kinetics of Precipitation in Metastable Binary Alloys—Theory and Application to Cu-1.9 at% Ti and Ni-14 at% Al, Decomposition of Alloys: The Early Stages, ed. by P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby, Pergamon, 1984, pp. 91-103Google Scholar
  15. 15.
    D. Kashchiev, Nucleation, 1st ed., Butterworth-Heinemann, Oxford, 2000Google Scholar
  16. 16.
    K.C. Russel, Nucleation in Solids: The Induction and Steady State Effects, Adv. Colloid Interface Sci., 1980, 13(3–4), p 205-318CrossRefGoogle Scholar
  17. 17.
    H.I. Aaronson and J.K. Lee, The Kinetic Equations of Solid- > Solid Nucleation Theory and Comparisions with Experimental Observations, Lectures on the Theory of Phase Transformations, 2nd edn., ed. by H.I. Aaronson, The Minerals, Metals & Materials Society, Warrendale, PA, 1999, p 165-230Google Scholar
  18. 18.
    C.A. Wert and C. Zener, Interference of Growing Spherical Precipitate Particles, J. Appl. Phys., 1950, 21, p 5-8ADSCrossRefGoogle Scholar
  19. 19.
    W.C. Johnson, Influence of Elastic Stress on Phase Transformations, Lectures on the Theory of Phase Transformations, 2nd edn., ed. by H.B. Aaron, The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1999, p 35-134Google Scholar
  20. 20.
    S. Onaka, N. Kobayashi, T. Fujii, and M. Kato, Energy Analysis with a Superspherical Shape Approximation on the Spherical to Cubical Shape Transitions of Coherent Precipitates in Cubic Materials, Mater. Sci. Eng. A, 2003, 347(1), p 42-49CrossRefGoogle Scholar
  21. 21.
    A.G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983Google Scholar
  22. 22.
    J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Relative Problems, Proc. R. Soc. A Math. Phys. Eng. Sci., 1957, 241(1226), p 376-396ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J.D. Eshelby, The Elastic Field Outside an Ellipsoidal Inclusion, Proc. R. Soc. A Math. Phys. Eng. Sci., 1959, 252(1271), p 561-569ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    C. Weinberger, W. Cai, and D. Barnett, ME340B Lecture Notes—Elasticity of Microscopic Structures, Stanford Univeristy, 2005. http://micro.stanford.edu/~caiwei/me340b/content/me340b-notes_v01.pdf
  25. 25.
    C.A. Johnson, Generalization of the Gibbs–Thomson Equation, Surf. Sci., 1965, 3(5), p 429-444ADSCrossRefGoogle Scholar
  26. 26.
    G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1961MATHGoogle Scholar
  27. 27.
    Y. Tang, Q. Chen, and A. Engström, Kinetic Simulations of Diffusion-Controlled Phase Transformations in Cu-Based Alloys, Diffus. Found., 2018, 15, p 1-22CrossRefGoogle Scholar
  28. 28.
    W.A. Soffa and D.E. Laughlin, High-Strength Age Hardening Copper-Titanium Alloys: Redivivus, Prog. Mater Sci., 2004, 49(3), p 347-366CrossRefGoogle Scholar
  29. 29.
    R. Kampmann, H. Eckerlebe, and R. Wagner, Precipitation Kinetics in Metastable Solid Solutions—Theoretical Considerations and Application to Cu-Ti Alloys, MRS Proc., 1985, 57, p 525CrossRefGoogle Scholar
  30. 30.
    C. Borchers, Catastrophic Nucleation During Decomposition of Cu-0.9at.% Ti, Philos. Mag. A, 1999, 79(3), p 537-547ADSCrossRefGoogle Scholar
  31. 31.
    J.K. Lee, D.M. Barnett, and H.I. Aaronson, The Elastic Strain Energy of Coherent Ellipsoidal Precipitates in Anisotropic Crystalline Solids, Metall. Trans. A, 1977, 8(6), p 963-970CrossRefGoogle Scholar
  32. 32.
    L.V. Alvensleben and R. Wagner, FIM-Atom Probe Studies of Early Stage Decomposition in Cu-Ti Alloys, Decomposition of Alloys: The Early Stages, Pergamon, 1984, pp. 143–148Google Scholar
  33. 33.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Some Aspects of the Precipitation of Metastable Intermetallic Phases in Inconel 718, Metall. Trans. A, 1992, 23(7), p 2015-2028CrossRefGoogle Scholar
  34. 34.
    A.K. Koul, P. Au, N. Bellinger, R. Thamburaj, W. Wallace, and J.P. Immarigeon, Development of a Damage Tolerant Microstructure for Inconel 718 Turbine Disc Material, Superalloys 1988, ed. by S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, Seven Springs, PA, TMS Society, 1988, pp. 3–12Google Scholar
  35. 35.
    A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier, Gamma Double Prime Precipitation Kinetic in Alloy 718, Mater. Sci. Eng. A, 2008, 486(1), p 117-122CrossRefGoogle Scholar
  36. 36.
    Y.-F. Han, P. Deb, and M.C. Chaturvedi, Coarsening Behavior of γ‘‘- and γ‘- Particles in Inconel Alloy 718, Metal Sci., 1982, 16(12), p 555-561CrossRefGoogle Scholar
  37. 37.
    R. Cozar and A. Pineau, Influence of Coherency Strains on Precipitate Shape in a Fe-Ni-Ta Alloy, Scr. Metall., 1973, 7(8), p 851-854CrossRefGoogle Scholar
  38. 38.
    T.M. Smith, C.K. Sudbrack, P. Bonacuse, and R. Rogers, Microstructural Characterization and Modeling of SLM Superalloy 718. https://ntrs.nasa.gov/search.jsp?R=20180000817. Accessed 2017

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Thermo-Calc Software Inc.PittsburghUSA
  2. 2.Thermo-Calc Software ABSolnaSweden

Personalised recommendations