Prediction of Glass Forming Ability Through High Throughput Calculation


In this work, high throughput calculation (HTC) is used to identify composition regions with good glass forming ability (GFA) in the Al-Cu-Zr, Cu-Ni-Zr, Cu-Ti-Zr, Cu-Ni-Ti-Zr, Al-Cu-Ni-Ti-Zr, Mg-Ca-Cu, and Mg-Ca-Ni systems. The predicted composition regions agree well with those observed by experiments in the ternary systems, while less satisfactory agreement is found in the Cu-Ni-Ti-Zr quaternary and the Al-Cu-Ni-Ti-Zr quinary systems. The possible causes that lead to the deviation in the higher order systems are discussed. The major advantage of the HTC method used in this study is that it is simple and can be easily applied to multicomponent systems. The color maps of liquidus temperature and solidification range obtained by HTC provide a valuable guidance to the experimentalists, thus they can focus on the composition regions with high potential of forming bulk metallic glasses, avoid unnecessary trial-and-error test and save time and cost. This approach can also be combined with other criteria to filter compositions with better GFA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    W. Klement, R.H. Willens, and P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature 187(4740), 869–870 (1960)

    ADS  Article  Google Scholar 

  2. 2.

    D. Turnbull, Under What Conditions can a Glass be Formed?. Contemp. Phys. 10, 473–488 (1969)

    ADS  Article  Google Scholar 

  3. 3.

    A. Inoue, T. Zhang, and T. Masumoto, Glass-Forming Ability of Alloys. J. Non-cryst. Solids 156–158, 473–480 (1993)

    ADS  Article  Google Scholar 

  4. 4.

    Z.P. Lu and C.T. Liu, A New Glass-Forming Ability Criterion for Bulk Metallic Glasses. Acta Mater. 50(13), 3501–3512 (2002)

    Article  Google Scholar 

  5. 5.

    Q.J. Chen, J. Shen, H.B. Fan, J.F. Sun, Y.J. Huang, and D.G. Mccartney, Glass-Forming Ability of an Iorn-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion. Chin. Phys. Lett. 22(7), 1736–1738 (2005)

    ADS  Article  Google Scholar 

  6. 6.

    G.J. Fan, H. Choo, and P.K. Liaw, A New Criterion for the Glass-Forming Ability of Liquids. J. Non-cryst. Solids. 353(1), 102–107 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang, and L. Yao, A New Criterion for Evaluating the Glass-Forming Ability of Bulk Glass Forming Alloys, J. Alloy. Compd. 459(1–2), 251–260 (2008)

    Article  Google Scholar 

  8. 8.

    X.L. Ji and Y. Pan, A Thermodynamic Approach to Assess Glass-Forming Ability of Bulk Metallic Glasses. Trans. Nonferrous Metals Soc. China 19(5), 1271–1279 (2009)

    Article  Google Scholar 

  9. 9.

    S. Guo and C.T. Liu, New Glass Forming Ability Criterion Derived from Cooling Consideration. Intermetallics 18(11), 2065–2068 (2010)

    Article  Google Scholar 

  10. 10.

    A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics, (Trans Tech Publications LTD, 1998)

  11. 11.

    W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull. 24(10), 42–56 (1999)

    Article  Google Scholar 

  12. 12.

    N. Saunders and A.P. Miodownik, Evaluation of Glass Forming Ability in Binary and Ternary Metallic Alloy Systems: An Application of Thermodynamic Phase Diagram Calculation. Mater. Sci. Technol. 4(9), 768–777 (1988)

    Article  Google Scholar 

  13. 13.

    C. Tang, H. Zhou, Thermodynamics and the glass forming ability of alloys, in Thermodynamics: Physical Chemistry of Aqueous Systemsed, ed. by J.C. Moreno-Piraján (InTech, 2011), pp. 49–72

  14. 14.

    W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth. Trans. AIME. 135, 416–458 (1939)

    Google Scholar 

  15. 15.

    M. Avrami, Kinetics of Phase Change. II, Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 8(2), 212–224 (1940)

    ADS  Article  Google Scholar 

  16. 16.

    L. Kaufman and H. Bernstein (ed.), Computer Calculation of Phase Diagrams, (Academic Press, New York, 1970)

    Google Scholar 

  17. 17.

    Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Phase Diagram Calculation: Past, Present and Future. Prog. Mater. Sci. 49, 313–345 (2004)

    Article  Google Scholar 

  18. 18.

    F.C. Kracek, The System Sodium Oxide-Silica. J. Phys. Chem. 34(7), 1583–1598 (1929)

    Article  Google Scholar 

  19. 19.

    X.-Y. Yan, Y.A. Chang, Y. Yang, F.-Y. Xie, S.-L. Chen, F. Zhang, S. Daniel, and M.-H. He, A Thermodynamic Approach for Predicting the Tendency of Multicomponent Metallic Alloys for Glass Formation. Intermetallics 9(6), 535–538 (2001)

    Article  Google Scholar 

  20. 20.

    D. Ma, H. Cao, L. Ding, and Y.A. Chang, Bulkier Glass Formability Enhanced by Minor Alloying Additions. Appl. Phys. Lett. 87, 171914 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    H. Cao, D. Ma, K.-C. Hsieh, L. Ding, W.G. Stratton, P.M. Voyles, Y. Pan, M. Cai, J.T. Dickinson, and Y.A. Chang, Computational Thermodynamics to Identify Zr-Ti-Ni-Cu-Al Alloys with High Glass-Forming Ability. Acta Mater. 54(11), 2975–2982 (2006)

    Article  Google Scholar 

  22. 22.

    D. Wang, H. Tan, and Y. Li, Multiple Maxima of GFA in Three Adjacent Eutectics in Zr-Cu-Al Alloy System: A Metallographic Way to Pinpoint the Best Glass Forming Alloys. Acta Mater. 53(10), 2969–2979 (2005)

    Article  Google Scholar 

  23. 23.

    B.W. Zhou, X.G. Zhang, W. Zhang, H. Kimura, A. Makino, and A. Inoue, High Glass Forming Ability and Good Mechanical Properties of Cu-Zr-Al Bulk Metallic Glasses. Mater. Res. Innov. 15(5), 310–313 (2011)

    Article  Google Scholar 

  24. 24.

    Q. Zhang, W. Zhang, G. Xie, and A. Inoue, Glass-Forming Ability and Mechanical Properties of the Ternary Cu-Zr-Al and Quaternary Cu-Zr-Al-Ag Bulk Metallic Glasses. Mater. Trans. 48(7), 1626–1630 (2007)

    Article  Google Scholar 

  25. 25.

    H. Yang, J.Q. Wang, and Y. Li, Glass Formation in the Ternary Zr-Zr2Cu-Zr2Ni System. J. Non-cryst. Solids 352(8), 832–836 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    C.-J. Hu and P.-Y. Lee, Formation of Cu-Zr-Ni Amorphous Powders with Significant Supercooled Liquid Region by Mechanical Alloying Technique. Mater. Chem. Phys. 74(1), 13–18 (2002)

    Article  Google Scholar 

  27. 27.

    T. Zhang, A. Inoue, and T. Masumoto, Amorphous (Ti, Zr, Hf)-Ni-Cu Ternary Alloys with a Wide Supercooled Liquid Region. Mater. Sci. Eng., A 181–182, 1423–1426 (1994)

    Article  Google Scholar 

  28. 28.

    C.L. Dai, H. Guo, Y. Li, and J. Xu, A New Composition Zone of Bulk Metallic Glass Formation in the Cu-Zr-Ti Ternary System and Its Correlation with the Eutectic Reaction. J. Non-cryst. Solids 354, 3659–3665 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    X.H. Lin and W.L. Johnson, Formation of Ti-Zr-Cu-Ni Bulk Metallic Glasses, J. Appl. Phys. Lett. 78(11), 6514–6519 (1995)

    ADS  Google Scholar 

  30. 30.

    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems. Acta Mater. 49(14), 2645–2652 (2001)

    Article  Google Scholar 

  31. 31.

    K.S.N.S. Idury, B.S. Murty, and J. Bhatt, Thermodynamic Modeling and Composition Design for the Formation of Zr-Ti-Cu-Ni-Al High Entropy Bulk Metallic Glasses. Intermetallics 65, 42–50 (2015)

    Article  Google Scholar 

  32. 32.

    O.N. Senkov, J.M. Scott, and D.B. Miracle, Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses. J. Alloy. Compd. 424, 394–399 (2006)

    Article  Google Scholar 

  33. 33.

    K.J. Laws, J.D. Cao, C. Reddy, K.F. Shamlaye, B. Gun, and M. Ferry, Ultra Magnesium-Rich, Low-Density Mg-Ni-Ca Bulk Metallic Glasses. Scr. Mater. 88, 37–40 (2014)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fan Zhang.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, C., Lv, D. et al. Prediction of Glass Forming Ability Through High Throughput Calculation. J. Phase Equilib. Diffus. 39, 562–570 (2018).

Download citation


  • bulk metallic glasses (BMGs)
  • CALPHAD approach
  • glass forming ability (GFA)
  • high throughput calculation (HTC)