Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 5, pp 562–570 | Cite as

Prediction of Glass Forming Ability Through High Throughput Calculation

  • Fan ZhangEmail author
  • Chuan Zhang
  • Duchao Lv
  • Jun Zhu
  • Weisheng Cao
  • Shuanglin Chen
  • Rainer Schmid-Fetzer


In this work, high throughput calculation (HTC) is used to identify composition regions with good glass forming ability (GFA) in the Al-Cu-Zr, Cu-Ni-Zr, Cu-Ti-Zr, Cu-Ni-Ti-Zr, Al-Cu-Ni-Ti-Zr, Mg-Ca-Cu, and Mg-Ca-Ni systems. The predicted composition regions agree well with those observed by experiments in the ternary systems, while less satisfactory agreement is found in the Cu-Ni-Ti-Zr quaternary and the Al-Cu-Ni-Ti-Zr quinary systems. The possible causes that lead to the deviation in the higher order systems are discussed. The major advantage of the HTC method used in this study is that it is simple and can be easily applied to multicomponent systems. The color maps of liquidus temperature and solidification range obtained by HTC provide a valuable guidance to the experimentalists, thus they can focus on the composition regions with high potential of forming bulk metallic glasses, avoid unnecessary trial-and-error test and save time and cost. This approach can also be combined with other criteria to filter compositions with better GFA.


bulk metallic glasses (BMGs) CALPHAD approach glass forming ability (GFA) high throughput calculation (HTC) 


  1. 1.
    W. Klement, R.H. Willens, and P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature 187(4740), 869–870 (1960)ADSCrossRefGoogle Scholar
  2. 2.
    D. Turnbull, Under What Conditions can a Glass be Formed?. Contemp. Phys. 10, 473–488 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    A. Inoue, T. Zhang, and T. Masumoto, Glass-Forming Ability of Alloys. J. Non-cryst. Solids 156–158, 473–480 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Z.P. Lu and C.T. Liu, A New Glass-Forming Ability Criterion for Bulk Metallic Glasses. Acta Mater. 50(13), 3501–3512 (2002)CrossRefGoogle Scholar
  5. 5.
    Q.J. Chen, J. Shen, H.B. Fan, J.F. Sun, Y.J. Huang, and D.G. Mccartney, Glass-Forming Ability of an Iorn-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion. Chin. Phys. Lett. 22(7), 1736–1738 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G.J. Fan, H. Choo, and P.K. Liaw, A New Criterion for the Glass-Forming Ability of Liquids. J. Non-cryst. Solids. 353(1), 102–107 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang, and L. Yao, A New Criterion for Evaluating the Glass-Forming Ability of Bulk Glass Forming Alloys, J. Alloy. Compd. 459(1–2), 251–260 (2008)CrossRefGoogle Scholar
  8. 8.
    X.L. Ji and Y. Pan, A Thermodynamic Approach to Assess Glass-Forming Ability of Bulk Metallic Glasses. Trans. Nonferrous Metals Soc. China 19(5), 1271–1279 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Guo and C.T. Liu, New Glass Forming Ability Criterion Derived from Cooling Consideration. Intermetallics 18(11), 2065–2068 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics, (Trans Tech Publications LTD, 1998)Google Scholar
  11. 11.
    W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull. 24(10), 42–56 (1999)CrossRefGoogle Scholar
  12. 12.
    N. Saunders and A.P. Miodownik, Evaluation of Glass Forming Ability in Binary and Ternary Metallic Alloy Systems: An Application of Thermodynamic Phase Diagram Calculation. Mater. Sci. Technol. 4(9), 768–777 (1988)CrossRefGoogle Scholar
  13. 13.
    C. Tang, H. Zhou, Thermodynamics and the glass forming ability of alloys, in Thermodynamics: Physical Chemistry of Aqueous Systemsed, ed. by J.C. Moreno-Piraján (InTech, 2011), pp. 49–72Google Scholar
  14. 14.
    W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth. Trans. AIME. 135, 416–458 (1939)Google Scholar
  15. 15.
    M. Avrami, Kinetics of Phase Change. II, Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 8(2), 212–224 (1940)ADSCrossRefGoogle Scholar
  16. 16.
    L. Kaufman and H. Bernstein (ed.), Computer Calculation of Phase Diagrams, (Academic Press, New York, 1970)Google Scholar
  17. 17.
    Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Phase Diagram Calculation: Past, Present and Future. Prog. Mater. Sci. 49, 313–345 (2004)CrossRefGoogle Scholar
  18. 18.
    F.C. Kracek, The System Sodium Oxide-Silica. J. Phys. Chem. 34(7), 1583–1598 (1929)CrossRefGoogle Scholar
  19. 19.
    X.-Y. Yan, Y.A. Chang, Y. Yang, F.-Y. Xie, S.-L. Chen, F. Zhang, S. Daniel, and M.-H. He, A Thermodynamic Approach for Predicting the Tendency of Multicomponent Metallic Alloys for Glass Formation. Intermetallics 9(6), 535–538 (2001)CrossRefGoogle Scholar
  20. 20.
    D. Ma, H. Cao, L. Ding, and Y.A. Chang, Bulkier Glass Formability Enhanced by Minor Alloying Additions. Appl. Phys. Lett. 87, 171914 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    H. Cao, D. Ma, K.-C. Hsieh, L. Ding, W.G. Stratton, P.M. Voyles, Y. Pan, M. Cai, J.T. Dickinson, and Y.A. Chang, Computational Thermodynamics to Identify Zr-Ti-Ni-Cu-Al Alloys with High Glass-Forming Ability. Acta Mater. 54(11), 2975–2982 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Wang, H. Tan, and Y. Li, Multiple Maxima of GFA in Three Adjacent Eutectics in Zr-Cu-Al Alloy System: A Metallographic Way to Pinpoint the Best Glass Forming Alloys. Acta Mater. 53(10), 2969–2979 (2005)CrossRefGoogle Scholar
  23. 23.
    B.W. Zhou, X.G. Zhang, W. Zhang, H. Kimura, A. Makino, and A. Inoue, High Glass Forming Ability and Good Mechanical Properties of Cu-Zr-Al Bulk Metallic Glasses. Mater. Res. Innov. 15(5), 310–313 (2011)CrossRefGoogle Scholar
  24. 24.
    Q. Zhang, W. Zhang, G. Xie, and A. Inoue, Glass-Forming Ability and Mechanical Properties of the Ternary Cu-Zr-Al and Quaternary Cu-Zr-Al-Ag Bulk Metallic Glasses. Mater. Trans. 48(7), 1626–1630 (2007)CrossRefGoogle Scholar
  25. 25.
    H. Yang, J.Q. Wang, and Y. Li, Glass Formation in the Ternary Zr-Zr2Cu-Zr2Ni System. J. Non-cryst. Solids 352(8), 832–836 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    C.-J. Hu and P.-Y. Lee, Formation of Cu-Zr-Ni Amorphous Powders with Significant Supercooled Liquid Region by Mechanical Alloying Technique. Mater. Chem. Phys. 74(1), 13–18 (2002)CrossRefGoogle Scholar
  27. 27.
    T. Zhang, A. Inoue, and T. Masumoto, Amorphous (Ti, Zr, Hf)-Ni-Cu Ternary Alloys with a Wide Supercooled Liquid Region. Mater. Sci. Eng., A 181–182, 1423–1426 (1994)CrossRefGoogle Scholar
  28. 28.
    C.L. Dai, H. Guo, Y. Li, and J. Xu, A New Composition Zone of Bulk Metallic Glass Formation in the Cu-Zr-Ti Ternary System and Its Correlation with the Eutectic Reaction. J. Non-cryst. Solids 354, 3659–3665 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    X.H. Lin and W.L. Johnson, Formation of Ti-Zr-Cu-Ni Bulk Metallic Glasses, J. Appl. Phys. Lett. 78(11), 6514–6519 (1995)ADSGoogle Scholar
  30. 30.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems. Acta Mater. 49(14), 2645–2652 (2001)CrossRefGoogle Scholar
  31. 31.
    K.S.N.S. Idury, B.S. Murty, and J. Bhatt, Thermodynamic Modeling and Composition Design for the Formation of Zr-Ti-Cu-Ni-Al High Entropy Bulk Metallic Glasses. Intermetallics 65, 42–50 (2015)CrossRefGoogle Scholar
  32. 32.
    O.N. Senkov, J.M. Scott, and D.B. Miracle, Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses. J. Alloy. Compd. 424, 394–399 (2006)CrossRefGoogle Scholar
  33. 33.
    K.J. Laws, J.D. Cao, C. Reddy, K.F. Shamlaye, B. Gun, and M. Ferry, Ultra Magnesium-Rich, Low-Density Mg-Ni-Ca Bulk Metallic Glasses. Scr. Mater. 88, 37–40 (2014)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Fan Zhang
    • 1
    Email author
  • Chuan Zhang
    • 1
  • Duchao Lv
    • 1
  • Jun Zhu
    • 1
  • Weisheng Cao
    • 1
  • Shuanglin Chen
    • 1
  • Rainer Schmid-Fetzer
    • 2
  1. 1.CompuTherm LLCMiddletonUSA
  2. 2.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations