Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 2, pp 166–175 | Cite as

450 °C and 600 °C Isothermal Sections of the Zn-Cr-Si Ternary Phase Diagram

  • Yangtian Yan
  • Xuping Su
  • Ya Liu
  • Yuwen Ding


The 450 and 600 °C isothermal sections of the Zn-Cr-Si system were experimentally constructed using scanning electron microscopy equipped with energy dispersive x-ray spectrometry, and x-ray diffraction. Six three-phase regions in the 450 °C section and five three-phase regions in the 600 °C section were identified experimentally. No ternary compound was found. Si has low solubility in CrZn17. The Zn solubility in CrSi2, Cr5Si3, and Cr3Si are all less than 2.2 at.%. The CrSi phase cannot be in equilibrium with the η-Zn phase. Thermodynamic extrapolation of the Zn-Cr-Si system was carried out and showed good agreement with experimentally determined phase relationships.


Zn-Cr-Si system isothermal section phase equilibria thermodynamics 



Financial support from the National Science Foundation of China (Grant Nos. 51471037 and 51671036) and a project funded by the Priority Academic Program Development of Jiangsu higher education institutions are greatly acknowledged.


  1. 1.
    R.S. Jamwal, M. Norden, B. Ehrhardt, and R. Schoenenberg, Advanced High Strength Steels: Development Concepts, Application and Challenges in Hot Dip Galvanizing, Stahl Undsen, 2014, 133(11), p S96-S110Google Scholar
  2. 2.
    J. Lu, C. Che, K. Gang, Q. Xu, and J. Chen, Influence of Silicon on the α-Fe/Γ Interface of Hot-Dip Galvanized Steels, Surf. Coat. Technol., 2006, 200(18–19), p 5277-5281Google Scholar
  3. 3.
    R.W. Sandelin, Galvanizing Characteristics of Different Typesof Steels, Wire Wire Prod., 1940, 15, p 3Google Scholar
  4. 4.
    M. Lindholm, A Thermodynamic Description of the Fe-Cr-Si System with Emphasis on the Equilibria of the Sigma (Σ) Phase, J. Phase Equilib., 1997, 18(5), p 432-440CrossRefGoogle Scholar
  5. 5.
    V. Raghavan, Fe-Si-Zn (Iron-Silicon-Zinc), J. Phase Equilib., 2004, 35(17), p 395-396Google Scholar
  6. 6.
    V. Raghavan, Cr-Fe-Zn (Chromium-Iron-Zinc), J. Phase Equilib., 2008, 29(5), p 442-443CrossRefGoogle Scholar
  7. 7.
    G. Reumont and P. Perrot, Thermodynamic Assessment of the Zinc-Rich Part of the Cr-Zn System, J. Phase Equilib., 2003, 24(1), p 50-54CrossRefGoogle Scholar
  8. 8.
    M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, 1958, p 572Google Scholar
  9. 9.
    N.Y. Tang and X.B. Yu, Study of the Zinc-Rich Corner of the Zn-Fe-Cr System at Galvanizing Temperatures, J. Phase Equilib., 2005, 26(1), p 50-54CrossRefGoogle Scholar
  10. 10.
    H. Hanemann, Investigation on Zinc-Chromium System, Z. Metallkd, 1940, 32, p 91-92Google Scholar
  11. 11.
    X. Su, Y. Liu, D.Y.H. Liu, J.C. Tedenac, F. Yin, and J. Wang, Experimental Investigation and Thermodynamic Assessment of the Zn-Cr System, J. Alloys Compd., 2010, 496(1–2), p 159-163CrossRefGoogle Scholar
  12. 12.
    T. Heumann, Contribution to the Knowledge of Zinc-Chromium System, Z. Metallkd, 1948, 39, p 45-52Google Scholar
  13. 13.
    B. Girault, F. Chevrier, A. Joullie, and G. Bougnot, Liquid Phase Epitaxy of Silicon at Very Low Temperatures, J. Cryst. Growth, 1977, 37(2), p 169-177ADSCrossRefGoogle Scholar
  14. 14.
    C.D. Thurmond and M. Kowalchik, Germanium and Silicon Liquidus Curves, Bell Labs Tech. J., 2013, 39(1), p 169-204CrossRefGoogle Scholar
  15. 15.
    E.R. Jette and E.B. Gebert, An X-Ray Study of the Binary Alloys of Silicon with Ag, Au, Pb, Sn, Zn, Cd, Sb and Bi, J. Chem. Phys., 1933, 1(11), p 753-755ADSCrossRefGoogle Scholar
  16. 16.
    R.W. Olesinski and G.J. Abbaschian, The Si-Zn (Silicon-Zinc) System, Bull. Alloy Phase Diagr., 1985, 6(6), p 545-548CrossRefGoogle Scholar
  17. 17.
    A.B. Gokhale and G.J. Abbaschian, The Cr-Si (Chromium-Silicon) System, J. Phase Equilib., 1987, 8(5), p 474CrossRefGoogle Scholar
  18. 18.
    C.A. Coughanowr, I. Ansara, and H.L. Lukas, Assessment of the Cr-Si System, Calphad, 1994, 18(18), p 125-140CrossRefGoogle Scholar
  19. 19.
    H. Okamoto, Cr-Si (Chromium-Silicon), J. Phase Equilib., 1997, 18(2), p 222CrossRefGoogle Scholar
  20. 20.
    Y. Du and J.C. Schuster, Experimental Reinvestigation of the CrSi-Si Partial System and Update of the Thermodynamic Description of the Entire Cr-Si System, J. Phase Equilib., 2000, 21(3), p 281-286CrossRefGoogle Scholar
  21. 21.
    H. Chen, Y. Du, and J.C. Schuster, On the Melting of Cr5Si3 and Update of the Thermodynamic Description of Cr-Si, Calphad, 2009, 33(1), p 211-214CrossRefGoogle Scholar
  22. 22.
    N.Y. Tang, X. Su, and J.M. Toguri, Experimental Study and Thermodynamic Assessment of the Zn-Fe-Ni System, Calphad, 2001, 25(2), p 267-277CrossRefGoogle Scholar
  23. 23.
    A. Shukla, Y.B. Kang, and A.D. Pelton, Thermodynamic Assessment of the Si-Zn, Mn-Si, Mg-Si-Zn and Mg-Mn-Si Systems, Calphad, 2008, 32(3), p 470-477CrossRefGoogle Scholar
  24. 24.
    S. Cui and I.H. Jung, Thermodynamic Assessments of the Cr-Si and Al-Cr-Si Systems, J. Alloys Compd., 2017, 708, p 887-902CrossRefGoogle Scholar
  25. 25.
    A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425CrossRefGoogle Scholar
  26. 26.
    T. Dasgupta, J. Etourneau, B. Chevalier, S.F. Matar, and A.M. Umarji, Structural, Thermal, and Electrical Properties of CrSi2, J. Appl. Phys., 2008, 103(11), p 1CrossRefGoogle Scholar
  27. 27.
    B. Altintas, A Comparative Study on Electronic and Structural Properties of Transition Metal Monosilicides, CrSi(B20-type), RhSi(B20-type), RhSi(B31-type) and RhSi(B2-type), J. Phys. Chem. Solids, 2011, 72(11), p 1325-1329ADSCrossRefGoogle Scholar
  28. 28.
    C.H. Dauben, D.H. Templeton, and C. Myers, The Crystal Structure of Cr5Si3, Acta Crystallogr, 1955, 14(12), p 1289-1290Google Scholar
  29. 29.
    W. Jauch, A.J. Schultz, and G. Heger, Single-Crystal Time-of-Flight Neutron Diffraction of Cr3Si and MnF2 Comparison with Monochromatic-Beam Techniques, J. Appl. Crystallogr., 1987, 20(2), p 117-119CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations