Skip to main content
Log in

Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at 1473 K (1200 °C) and P(SO2) = 0.25 atm

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Cu-Fe-O-S system is the key system for the characterisation of the phase chemistry in high-temperature copper making processes. An experimental study was undertaken to investigate the gas/matte/spinel equilibria in the Cu-Fe-O-S system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of oxygen partial pressures. The experimental methodology involved high temperature equilibration using a primary phase substrate technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of the equilibrated phases, followed by direct measurement of phase compositions using electron probe x-ray microanalysis. Particular attention was given to the analysis of reactions during equilibration and confirmation of the achievement of equilibrium in the present study. The new data provide important information for understanding of the gas/matte/spinel interactions at high temperature and provide an essential foundation for the development of the multicomponent thermodynamic database for copper-containing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.Y. Bor and P. Tarassoff, Can. Metall. Q., 1971, 10, p 267-271

    Article  Google Scholar 

  2. A. Geveci and T. Rosenqvist, Trans. Inst. Min. Metall., 1973, 82, p C193-C201

    Google Scholar 

  3. M. Nagamori, Metall. Trans. B, 1974, 5B, p 531-538

    Article  ADS  Google Scholar 

  4. U. Kuxmann and H. Bussman, Erzmetall, 1974, 27, p 353-365

    Google Scholar 

  5. G.H. Kaiura, K. Watanabe, and A. Yazawa, Can. Metall. Q., 1980, 19, p 191-200

    Article  Google Scholar 

  6. H. Jalkanen, Scand. J. Metall., 1981, 10, p 177-184

    Google Scholar 

  7. A. Yazawa, S. Nakazawa, and Y. Takeda, Distribution Behavior of Various Elements in Copper Smelting Systems. in Proceedings of International Sulphide Smelting Symposium, Metall. Soc. AIME, San Francisco, USA, 1983, p 99–117

  8. H.K. Jalkanen, L.E.K. Holappa, and J.K. Makinen, Some Novel Aspects of Matte-Slag Equilibria. in Proceedings of International Sulphide Smelting Symposium, Metall. Soc. AIME, San Francisco, USA, 1983, p 277–292

  9. R. Shimpo, S. Goto, O. Ogawa, and I. Asakura, Can. Metall. Q., 1986, 25, p 113-121

    Article  Google Scholar 

  10. F.J. Tavera and E. Bedolla, Int. J. Miner. Process., 1990, 29, p 289-309

    Article  Google Scholar 

  11. A. Yazawa and M. Kameda, Technol. Rep. Tohoku Univ., 1955, 19, p 251-261

    Google Scholar 

  12. N. Korakas, Etude Thermodynamic de L’équilibre Entre Escories Ferro-Siliceuses et Mattes de Cuivre. Application aux Problèmes Posés par la Formation de Magnetite lors du Traitement des Minerais Sulfurés de Cuivre, Vaillant-Carmanne, Águas de Lindóia, 1964

    Google Scholar 

  13. U. Kuxmann and F.Y. Bor, Erzmetall, 1965, 18, p 441-450

    Google Scholar 

  14. F.J. Tavera and W.G. Davenport, Metall. Trans. B, 1979, 10B, p 237-241

    Article  ADS  Google Scholar 

  15. H. Li and W.J. Rankin, Metall. Trans. B, 1994, 25B, p 79-89

    Article  Google Scholar 

  16. Y. Takeda, Oxygen Potential Measurement of Iron Silicate Slag-Copper-Matte System. in Proceedings of the 5th International Conference on Molten Slags, Fluxes and Salts, Iron and Steel Society, Sydney, Australia, 1997, p 735–743

  17. G. Roghani, M. Hino, and K. Itagaki, Mater. Trans., JIM, 1997, 38, p 707-713

    Article  Google Scholar 

  18. J.M. Font, G. Roghani, M. Hino, and K. Itagaki, Metall. Rev. MMIJ, 1998, 15, p 75-86

    Google Scholar 

  19. G. Roghani, Y. Takeda, and K. Itagaki, Metall. Mater. Trans. B, 2000, 31B, p 705-712

    Article  ADS  Google Scholar 

  20. H.M. Henao, L.A. Ushkov, and E. Jak, Thermodynamic Predictions and Experimental Investigation of Slag Liquidus and Minor Element Partitioning Between Slag and Matte in Support of the Copper Isasmelt Smelting Process Commissioning and Optimisation at Kazzinc. in Proceedings of the 9th International Conference on Molten Slags, Fluxes and Salts (Molten12), The Chinese Society for Metals, 2012, Paper No. W078

  21. Z. Sun, T. Hidayat, P. Hayes, and E. Jak, Liquidus Temperatures, Major and Minor Elements Equilibrium Partitioning in Copper Smelting Slag/Matte/Gas Systems. in Proceedings of the 8th International Copper Conference, Chilean Institute of Mining Engineers (IIMCh), Santiago, Chile, 2013, p 33–44

  22. H.N. Lander, Thesis, Massachusetts Institute of Technology, USA, 1954 cited in Ref. [26]

  23. T. Rosenqvist and T. Hartvig, Norges Tek.-Naturvitenskapelige Forskiningsrud Met. Kom. Meddel, 1958, 24, p 21-52

    Google Scholar 

  24. F. Johannsen and H. Knahl, Z. Erzbergbau Metallhuettenwes, 1963, 16, p 611-621

    Google Scholar 

  25. M. Kameda and A. Yazawa, Stud. Met. 1969, p 159-166.

  26. A. Luraschi and J.F. Elliott, Trans. Inst. Min. Metall., 1980, 89, p C14-C25

    Google Scholar 

  27. D.L. Kaiser and J.F. Elliott, Metall. Trans. B, 1988, 19, p 935-941

    Article  Google Scholar 

  28. E. Jak, S.A. Decterov, P.C. Hayes, and A.D. Pelton, Thermodynamic Modelling of the System PbO-ZnO-FeO-Fe2O3-CaO-SiO2 for Zinc/Lead Smelting. in Proceedings of the 5th International Conference on Molten Slags, Fluxes and Salts, Iron and Steel Society, Sydney, Australia, 1997, p 621–628

  29. S.A. Degterov and A.D. Pelton, Metall. Mater. Trans. B, 1999, 30B, p 661-669

    Article  Google Scholar 

  30. E. Jak, S.A. Decterov, B. Zhao, A.D. Pelton, and P.C. Hayes, Metall. Mater. Trans. B, 2000, 31B, p 621-630

    Article  Google Scholar 

  31. S.A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P.C. Hayes, and A.D. Pelton, Thermodynamic Modeling of the Al2O3-CaO-CoO-CrO-Cr2O3-FeO-Fe2O3-MgO-MnO-NiO-SiO2-S System and Applications in Ferrous Process Metallurgy. in The 7th International Conference on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, Cape Town, Republic of South Africa, 2004, p 839–850

  32. FactSage 7.0, FToxid and FTmisc Databases, 2015. http://www.factsage.com/

  33. E. Jak, P.C. Hayes, and H.-G. Lee, Met. Mater. (Seoul), 1995, 1, p 1-8

    Google Scholar 

  34. E. Jak, Integrated Experimental and Thermodynamic Modelling Research Methodology for Metallurgical Slags with Examples in the Copper Production Field. in The 9th International Conference on Molten Slags, Fluxes and Salts (Molten12), The Chinese Society for Metals, Beijing, China, 2012, Paper No. W077

  35. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B, 2017, 48, p 3002-3016

    Article  Google Scholar 

  36. T. Hidayat, D. Shishin, E. Jak, and S. Decterov, Calphad, 2015, 48, p 131-144

    Article  Google Scholar 

  37. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B, 2017, 48, p 3017-3026

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Research Council Linkage program LP140100480, Altonorte Glencore, Atlantic Copper, Aurubis, BHP Billiton Olympic Dam Operation, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Anglo American Platinum, Umicore, and Rio Tinto Kennecott for the financial and technical support for this research. The authors acknowledge the support of the AMMRF at the Centre for Microscopy and Microanalysis at the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taufiq Hidayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidayat, T., Hayes, P.C. & Jak, E. Experimental Investigation of Gas/Matte/Spinel Equilibria in the Cu-Fe-O-S System at 1473 K (1200 °C) and P(SO2) = 0.25 atm. J. Phase Equilib. Diffus. 39, 138–151 (2018). https://doi.org/10.1007/s11669-018-0616-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0616-5

Keywords

Navigation