Skip to main content
Log in

Thermodynamic Evaluation and Optimization of the SrO-MgO, SrO-SiO2 and SrO-MgO-SiO2 Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The SrO-MgO and SrO-SiO2 systems have been critically evaluated based upon available phase equilibrium and thermodynamic data, and optimized model parameters have been obtained giving the Gibbs energies of all phases as functions of temperature and composition. The liquid solution has been modeled with the Modified Quasichemical Model to account for short-range-ordering. The results have been combined with those of previous optimizations of the MgO-SiO2 system in the optimization of the SrO-MgO-SiO2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Wu, G. Eriksson, A.D. Pelton, and M. Blander, Prediction of the Thermodynamic Properties and Phase Diagrams of Silicate Systems—Evaluation of the FeO-MgO-SiO2 System, ISIJ Int., 1993, 33, p 26-35

    Article  Google Scholar 

  2. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage Thermochemical Software and Databases—Recent Developments, Calphad, 2009, 33, p 295-311

    Article  Google Scholar 

  3. A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin, and Y. Dessureault, The Modified Quasichemical Model. I—Binary Solutions, Metall. Mater. Trans. B, 2000, 31, p 651-659

    Article  Google Scholar 

  4. A.D. Pelton and P. Chartrand, The Modified Quasichemical Model. II—Multicomponent Solutions, Metall. Mater. Trans. A, 2001, 32, p 1355-1360

    Article  Google Scholar 

  5. P. Chartrand and A.D. Pelton, The Modified Quasichemical Model. III—Two Sublattices, Metall. Mater. Trans. A, 2001, 32, p 1397-1407

    Article  Google Scholar 

  6. A.D. Pelton, P. Chartrand, and G. Eriksson, The Modified Quasichemical Model. IV—Two Sublattice Quadruplet Approximation, Metall. Mater. Trans. A, 2001, 32, p 1409-1415

    Article  Google Scholar 

  7. A.D. Pelton and M. Blander, Computer-Assisted Analysis of the Thermodynamic Properties and Phase Diagrams of Slags, in Proceedings of the Second International Symposium on Metallurgical Slags and Fluxes, TMS-AIME, Warrendale, PA, 1984, p 281-294

  8. A.D. Pelton, A General “Geometric” Thermodynamic Model for Multicomponent Solutions, Calphad, 2001, 25, p 319-328

    Article  Google Scholar 

  9. D. Risold, B. Hallstedt, and L.J. Gauckler, The Strontium-Oxygen System, CALPHAD Comput. Coupling Phase Diagr. Thermochem., 1996, 20, p 353-361

    Article  Google Scholar 

  10. E.E. Schumacher, Melting Points of Barium, Strontium and Calcium Oxides, J. Am. Chem. Soc., 1926, 48, p 396-405

    Article  Google Scholar 

  11. F. Hanic, T.Y. Chemekova, and Y.P. Udalov, Strontium Oxide-Alumina System, Zh. Neorg. Khim., 1979, 24, p 471-475

    Google Scholar 

  12. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton, Critical Evaluation and Optimisation of the Thermodynamic Properties and Phase Diagrams of the MnO-SiO2 and CaO-SiO2 Systems, Can. Metall. Q., 1994, 33, p 13-21

    Article  Google Scholar 

  13. K. Irgashov, V.D. Tarasov, and V.Y. Chekhovskii, Thermodynamic Properties of Strontium Oxide in the Solid and Liquid Phases, Teplofiz. Vys. Temp., 1985, 23, p 86-91

    Google Scholar 

  14. A. Romero-Serrano, A. Cruz-Ramirez, B. Zeifert, M. Hallen-Lopez, and A. Hernandez-Ramirez, Thermodynamic Modeling of the BaO-SiO2 and SrO-SiO2 Binary Melts, Glass Phys. Chem., 2010, 36, p 171-178

    Article  Google Scholar 

  15. A. Shukla, Development of a Critically Evaluated Thermodynamic Database for the Systems Containing Alkaline-Earth Oxides, Ph.D. thesis. Département de génie chimique, École Polytechnique de Montréal, 2012

  16. R. Zhang, H. Mao, and P. Taskinen, Thermodynamic Descriptions of the BaO-CaO, BaO-SrO, BaO-SiO2 and SrO-SiO2 Systems, CALPHAD Comput. Coupling Phase Diagr. Thermochem., 2016, 54, p 107-116

    Article  Google Scholar 

  17. A.D. Pelton, Thermodynamic models and databases for slags, fluxes and salts, in Proceedings of the 7th International Conference on Molten Slags, Fluxes and Salts, Johannesburg, 2004, p 607-614

  18. A.D. Pelton and Y.-B. Kang, Modeling Short-Range Ordering in Solutions, Int. J. Mater. Res., 2007, 98, p 907-917

    Article  Google Scholar 

  19. www.webelements.com. (2012, 1 March 2012). http://www.webelements.com/

  20. P. Eskola, The Silicates of Strontium and Barium, Am. J. Sci., 1922, 4, p 331-375

    Article  Google Scholar 

  21. R.W. Nurse, Tristrontium Silicate—A New Compound, J. Appl. Chem., 1952, 2, p 244-246

    Article  Google Scholar 

  22. J.M.J. Fields, P.S. Dear, and J.J.J. Brown, Phase Equilibriums in the System BaO-SrO-SiO2, J. Am. Ceram. Soc., 1972, 55, p 585-588

    Article  Google Scholar 

  23. M.E. Huntelaar, E.H.P. Cordfunke, and A. Scheele, Phase Relations in the Strontium Oxide-Silica-Zirconium Dioxide System I. The System SrO-SiO2, J. Alloys Compd., 1993, 191, p 87-90

    Article  Google Scholar 

  24. K. Ghanbari-Ahari and N.H. Brett, Phase Equilibria and Microstructure in the System Zirconia-Magnesia-Silica-Strontia. Part 2: The Ternary System Magnesia-Silica-Strontia, Br. Ceram. Trans. J., 1988, 87, p 103-106

    Google Scholar 

  25. J.W. Greig, Immiscibility in Silicate Melts Part I, Am. J. Sci, 1927, 13, p 1-44

    Article  Google Scholar 

  26. V.B. Hageman and H.A. Oonk, Liquid Immiscibility in the SiO2 + MgO, SiO2 + SrO, SiO2 + La2O3, and SiO2 + Y2O3 Systems, Phys. Chem. Glasses, 1986, 27, p 194-198

    Google Scholar 

  27. Y.I. Ol’shansky, Equilibrium of the Two Immiscible Liquids in the Silicate Systems of the Earth Metals, Dokl. Akad. Nauk SSSR, 1951, 76, p 93-96

    Google Scholar 

  28. A. Shukla, S.A. Decterov, and A.D. Pelton, Thermodynamic Evaluation and Optimization of the SrO-Al2O3, SrO-Al2O3-SiO2 and SrO-Al2O3-CaO Systems, in preparation

  29. G. Tromel, W. Fix, and R. Heinke, High Temperature Investigations Up to 1900 °C on Calcium Orthosilicate and Trisilicate, Tonindustrie-Zeitung und Keramishe Rundschau, 1969, 93, p 1-8

    Google Scholar 

  30. M. Catti, G. Gazzoni, G. Ivaldi, and G. Zanini, The β ↹ α′ Phase Transition of Strontium Silicate (Sr2SiO4). I. Order-Disorder in the Structure of the α′ form at 383 K, Acta Crystallogr. Sect. B, 1983, B39, p 674-679

    Article  Google Scholar 

  31. M. Catti and G. Gazzoni, The β ↹ α′ Phase Transition of Strontium Silicate (Sr2SiO4). II. X-ray and Optical Study, and Ferroelasticity of the β Form, Acta Crystallogr. Sect. B, 1983, B39, p 679-684

    Article  Google Scholar 

  32. M. Catti, G. Gazzoni, and G. Ivaldi, Structures of Twinned β-Strontium Silicate (Sr2SiO4) and of α′-Strontium Barium Silicate (Sr1.9Ba0.1SiO4), Acta Crystallogr. Sect. C, 1983, C39, p 29-34

    Article  Google Scholar 

  33. J. Liu, C.-G. Duan, W.N. Mei, R.W. Smith, and J.R. Hardy, Polymorphous Transformations in Alkaline-Earth Silicates, J. Chem. Phys., 2002, 116, p 3864-3869

    Article  ADS  Google Scholar 

  34. T. Hahn and W. Eysel, Solid Solubility in the System Zn2SiO4-Zn2GeO4-Be2SiO4-Be2GeO4, N. Jahrb. Miner. Monatsh., 1970, 6, p 263-276

    Google Scholar 

  35. G. Pieper, W. Eysel, and T. Hahn, Solid Solubility and Polymorphism in the System Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4, J. Am. Ceram. Soc., 1972, 55, p 619-622

    Article  Google Scholar 

  36. M. Catti, G. Gazzoni, and G. Ivaldi, Order-Disorder in the α′-(Calcium, Strontium) Silicate ((Ca, Sr)2SiO4) Solid Solution: A Structural and Statistical-Thermodynamic Analysis, Acta Crystallogr. Sect. B, 1984, B40, p 537-544

    Article  Google Scholar 

  37. D.A. Buckner and R. Roy, Subsolidus Study of the System CaSiO3-SrSiO3, J. Am. Ceram. Soc., 1960, 43, p 52-53

    Article  Google Scholar 

  38. H. Yang and C.T. Prewitt, On the Crystal Structure of Pseudowollastonite (CaSiO3), Am. Mineral., 1999, 84, p 929-932

    Article  ADS  Google Scholar 

  39. M.E. Huntelaar, E.H.P. Cordfunke, and W. Ouweltjes, The Standard Molar Enthalpies of Formation of Strontium Silicates SrSiO3(s) and Sr2SiO4(s), J. Chem. Thermodyn., 1992, 24, p 139-143

    Article  Google Scholar 

  40. R. Barany, E.G. King, and S.S. Todd, Heats of Formation of Crystalline Silicates of Strontium and Barium, J. Am. Chem. Soc., 1957, 79, p 3639-3641

    Article  Google Scholar 

  41. R. Nacken, Determination of the Heats of Formation of Silicates from Their Oxides, Zement, 1930, 19, p 818-825

    Google Scholar 

  42. I.H. Jung, A. Shukla, S.A. Decterov, and A.D. Pelton, The Thermodynamic Optimization of the BaO-SiO2 and BaO-CaO-SiO2 Systems, Calphad, to be submitted, 2017

  43. M.E. Huntelaar, E.H.P. Cordfunke, and E.F.J. Westrum, The Heat Capacity and Derived Thermophysical Properties of Some Alkaline Earth Silicates and Zirconates from 5 to 1000 K. I. Crystalline Strontium Silicates (SrSiO3 and Sr2SiO4), J. Phys. Chem. Solids, 1992, 53, p 801-806

    Article  ADS  Google Scholar 

  44. W.W. Weller and K.K. Kelley, Low Temperature Heat Capacities and Entropies at 298.15°K of Crystalline Silicates of Barium and Strontium, US Department of the Interior, 1964

  45. G. Róg, B. Langanke, G. Borchardt, and H. Schmalzried, Determination of the Standard Gibbs Free Energies of Formation of the Silicates of Cobalt, Magnesium, and Strontium by EMF Measurements, J. Chem. Thermodyn., 1974, 6, p 1113-1119

    Article  Google Scholar 

  46. S.I. Lopatin, S.M. Shugurov, V.L. Stolyarova, and N.G. Tyurnina, Thermodynamic Properties of Silicate Glasses and Melts: II. System SrO-SiO2, Russ. J. Gen. Chem., 2006, 76, p 1878-1884

    Article  Google Scholar 

  47. H. Wartenberg and E. Prophet, Melting-Point Diagrams of Highly Refractory Oxides. V. Systems with Magnesia, Z. Anorg. Allgem. Chem., 1932, 208, p 369-379

    Article  Google Scholar 

  48. M. Blander, Thermodynamic Properties of Molten Salt Solutions, U. S. A. E. C., vol. ORNL-3293, 1962, p 97

  49. K.T. Jacob and V. Varghese, Solid-State Miscibility Gap and Thermodynamics of the System BaO-SrO, J. Mater. Chem., 1995, 5, p 1059-1062

    Article  Google Scholar 

  50. K.T. Jacob and Y. Waseda, Solid-State Immiscibility and Thermodynamics of the Calcium Oxide-Strontium Oxide System, J. Am. Ceram. Soc., 1998, 81, p 1065-1068

    Article  Google Scholar 

  51. P. Wu, G. Eriksson, and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the Calcia-Iron(II) Oxide, Calcia-Magnesia, Calcia-Manganese(II) Oxide, Iron(II) Oxide-Magnesia, Iron(II) Oxide-Manganese(II) Oxide, and Magnesia-Manganese(II) Oxide Systems, J. Am. Ceram. Soc., 1993, 76, p 2065-2075

    Article  Google Scholar 

  52. W.J.M. Van-der Kemp, J.G. Blok, P.R. van der Linde, H.A.J. Oonk, A. Schuijff, and M.L. Verdonk, Binary Alkaline Earth Oxide Mixtures: Estimation of the Excess Thermodynamic Properties and Calculation of the Phase Diagrams, Calphad, 1994, 18, p 255-267

    Article  Google Scholar 

  53. F. Massazza, Ricerche Nel Sistema Quaternario CaO-SrO-MgO-SiO2. Il Sistema 2CaO·MgO·2SiO2-2SrO·MgO·2SiO2, Ann. Chim. (Rome), 1962, 52, p 611-619

    Google Scholar 

  54. H.A. Klasens, A.H. Hoekstra, and A.P.M. Cox, Ultraviolet Fluorescence of Some Ternary Silicates Activated with Lead, J. Electrochem. Soc., 1957, 104, p 93-100

    Article  Google Scholar 

  55. M.E. Huntelaar, A.S. Booij, E.H.P. Cordfunke, and R.R. Van der Laan, The Thermodynamic Properties of Sr3MgSi2O8(s) From T = (0 to 1500) K, J. Chem. Thermodyn., 1998, 30, p 497-507

    Article  Google Scholar 

  56. I.H. Jung, A. Shukla, S.A. Decterov, and A. Pelton, Thermodynamic Evaluation and Optimization of the BaO-SiO2 and BaO-CaO-SiO2 Systems, Calphad, submitted

  57. V. Prostakova, J. Chen, E. Jak, and S.A. Decterov, Experimental Investigation and Thermodynamic Modeling of the (NiO + CaO + SiO2) (NiO + CaO + MgO) and (NiO + CaO + MgO + SiO2) Systems, J. Chem. Thermodyn., 2015, 86, p 130-142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Decterov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Decterov, S.A. & Pelton, A.D. Thermodynamic Evaluation and Optimization of the SrO-MgO, SrO-SiO2 and SrO-MgO-SiO2 Systems. J. Phase Equilib. Diffus. 38, 615–629 (2017). https://doi.org/10.1007/s11669-017-0585-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0585-0

Keywords

Navigation