Skip to main content

Advertisement

Log in

Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method

Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Triangulation of the Ag-Pb-Ge-S system in the Ag8GeS6-Ge-GeS2-PbS part was performed by differential thermal analysis, XRD and EMF methods. The serpentine-like shape of the concentration variation of Gibbs partial energy of silver \(- \Delta \overline{G}_{\text{Ag}}^{ \circ }\) in the alloys of the Ag8GeS6-PbS system in the Ag8GeS6-(Ag8GeS6)0.79(PbS)0.21 part at T = const (T = 518, 538, 556 K) is the consequence of the kinetically metastable state of the alloys of the limited solid solution range Ag8GeS6-(Ag8GeS6)0.81(PbS)0.19. According to the principles of continuity and correspondence, the \(- \Delta \overline{G}_{\text{Ag}}^{ \circ }\) extremum of the alloy (Ag8GeS6)0.84(PbS)0.16 determines the composition of the intermediate phase Ag6.72Pb0.16Ge0.84S5.20 of the equilibrium system Ag8GeS6-PbS. Potential-forming processes were performed in electrochemical cells (ECCs) of the type C|Ag|Ag2GeS3 glass|D|C (where C are current (graphite) electrode; Ag and D are the electrodes of ECCs; Ag2GeS3 glass is a membrane with ionic Ag+ conductivity; D are silver-containing single-, two- and four-phase alloys). Linear EMF dependences of cells in the 510-560 K range were used to calculate integral values of the thermodynamic functions of saturated solid solutions of the phases Ag2PbGeS4, Ag0.5Pb1.75GeS4, Ag6.72Pb0.16Ge0.84S5.20 (the composition of Ag6.48Pb0.19Ge0.81S5.05 from the PbS side). A significant excess of integral standard energy Gibbs \(\Delta_{\text{f}} G_{{298,\;{\text{Ag}}_{ 6. 4 8} {\text{Pb}}_{ 0. 1 9} {\text{Ge}}_{ 0. 8 1} {\text{S}}_{ 5. 0 5} }}^{\circ}\) = (−401.8 ± 1.5) kJ mol−1 over the values of \(\Delta_{\text{f}} G_{298,\;{\text{A}}{{\text{g}}_{\text{8}}}{\text{Ge}}{{\text{S}}_{\text{6}}}}^{\circ}\) = (−345.0 ± 2.2) kJ mol−1 and \(\Delta_{\text{f}} G_{{298,\;{\text{PbS}}}}^{\circ}\) = (−96.994 ± 0.005) kJ mol−1 is considered as the confirmation of the existence of a quaternary phase in the equilibrium system Ag8GeS6-PbS. The contribution of the entropy factor \(T\Delta_{\text{f}} S_{{298,\;{\text{Ag}}_{ 6. 4 8} {\text{Pb}}_{ 0. 1 9} {\text{Ge}}_{ 0. 8 1} {\text{S}}_{ 5. 0 5} }}^{\circ}\) into the value of \(\Delta_{\text{f}} G_{{298,\;{\text{Ag}}_{ 6. 4 8} {\text{Pb}}_{ 0. 1 9} {\text{Ge}}_{ 0. 8 1} {\text{S}}_{ 5. 0 5} }}^{\circ}\) exceeds 33%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.A. Aitken, P. Larson, S.D. Mahanti, and M.G. Kanatzidis, Li2PbGeS4 and Li2EuGeS4: Polar Chalcopyrites with a Severe Tetragonal Compression, Chem. Mater., 2001, 13, p 4714-4721

    Article  Google Scholar 

  2. A.-M. Lamarche, A. Willsher, L. Chen, G. Lamarche, and J.C. Woolley, Crystal Structures of I2·Mn·IV·VI4 Compounds, J. Solid State Chem., 1991, 94, p 313-318

    Article  ADS  Google Scholar 

  3. O.V. Parasyuk, L.V. Piskach, Y.E. Romanyuk, I.D. Olekseyuk, V.I. Zaremba, and V.I. Pekhnyo, Phase Relations in the Quasi-Binary Cu2GeS3–ZnS and Quasi-Ternary Cu2S–Zn(Cd)S–GeS2 Systems and Crystal Structure of Cu2ZnGeS4, J. Alloys Compd., 2005, 397, p 85-94

    Article  Google Scholar 

  4. J.C. Woolley, A.-M. Lamarche, G. Lamarche, C. Church, I.P. Swainson, and T.M. Holden, Crystal Symmetry of Ag2MnGeTe4 Phases, J. Solid State Chem., 1995, 115, p 192-196

    Article  ADS  Google Scholar 

  5. M. Quintero, A. Barreto, P. Grima, R. Tovar, E. Quintero, G.S. Porras, J. Ruiz, J.C. Woolley, G. Lamarche, and A.-M. Lamarche, Crystallographic Properties of I2–Fe–IV–VI4 Magnetic Semiconductor Compounds, Mater. Res. Bull., 1999, 34, p 2263-2270

    Article  Google Scholar 

  6. O.V. Parasyuk, L.D. Gulay, L.V. Piskach, and O.P. Gagalovska, The Ag2S–HgS–GeS2 System at 670 K and the Crystal Structure of the Ag2HgGeS4 Compound, J. Alloys Compd., 2002, 336, p 213-217

    Article  Google Scholar 

  7. O.V. Parasyuk, I.D. Olekseyuk, L.V. Piskach, S.V. Volkov, and V.I. Pekhnyo, Phase Relations in the Ag2S–CdS–SnS2 System and the Crystal Structure of the Compounds, J. Alloys Compd., 2005, 399, p 173-177

    Article  Google Scholar 

  8. O.V. Parasyuk, A.O. Fedorchuk, Y.M. Kogut, L.V. Piskach, and I.D. Olekseyuk, The Ag2S–ZnS–GeS2 System: Phase Diagram, Glass-Formation Region and Crystal Structure of Ag2ZnGeS4, J. Alloys Compd., 2010, 500, p 26-29

    Article  Google Scholar 

  9. Y. Kogut, A. Fedorchuk, O. Zhbankov, Y. Romanyuk, I. Kityk, L. Piskach, and O. Parasyuk, Isothermal section of the Ag2S–PbS–GeS2 system at 300 K and the crystal structure of Ag2PbGeS4, J. Alloys Compd., 2011, 509, p 4264-4267

    Article  Google Scholar 

  10. S. Greil, Untersuchungen an Ternären und Quaternären Kupfer-, Lithium-, und Silbersulfiden mit Diamantstruktur, PhD, Universität Regensburg, 2016, p. 120

  11. J.A. Aitken, G.A. Marking, M. Evain, L. Iordanidis, and M.G. Kanatzidis, Flux Synthesis and Isostructural Relationship of Cubic Na1.5Pb0.75PSe4, Na0.5Pb1.75GeS4, and Li0.5Pb1.75GeS4, J. Solid State Chem., 2000, 153, p 158-169

    Article  ADS  Google Scholar 

  12. J.A. Aitken and M.G. Kanatzidis, α-Na6Pb3(PS4)4, a Noncentrosymmetric Thiophosphate with the Novel, Saucer-Shaped [Pb3(PS4)4]6− Cluster, and Its Metastable, 3-Dimensionally Polymerized Allotrope β-Na6Pb3(PS4)4, Inorg. Chem., 2001, 40, p 2938-2939

    Article  Google Scholar 

  13. R.G. Iyer, J.A. Aitken, and M.G. Kanatzidis, Noncentrosymmetric Cubic Thio- and Selenogermanates: A0.5M1.75GeQ4 (A = Ag, Cu, Na; M = Pb, Eu; Q = S, Se), Solid State Sci., 2004, 6, p 451-459

    Article  ADS  Google Scholar 

  14. G.E. Davydyuk, G.L. Myronchuk, I.V. Kityk, S.P. Danyl’chuk, V.V. Bozhko, and O.V. Parasyuk, Ag2CdSnS4 Single Crystals as Promising Materials for Optoelectronic, Opt. Mater., 2011, 33, p 1302-1306

    Article  ADS  Google Scholar 

  15. Y. Kogut, O.Y. Khyzhun, O.V. Parasyuk, A.H. Reshak, G. Lakshminarayana, I.V. Kityk, and M. Piasecki, Electronic Spectral Parameters and IR Nonlinear Optical Features of Novel Ag0.5Pb1.75GeS4 Crystal, J. Cryst. Growth, 2012, 354, p 142-146

    Article  ADS  Google Scholar 

  16. A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk, O.V. Zamuruyeva, G.L. Myronchuk, O.V. Parasyuk, H. Kamarudin, S. Auluck, K.J. Plucinski, and J. Bila, Electronic and Optical Features of the Mixed Crystals Ag0.5Pb1.75Ge(S1–xSex)4, J. Mater. Chem. C, 2013, 1, p 4667-4675

    Article  Google Scholar 

  17. Y.M. Kogut, A.O. Fedorchuk, O.V. Parasyuk, A.A. Albassam, A.M. El-Naggar, and I.V. Kityk, Laser Operated Piezoelectricity in Ag0.5Pb1.75GeS4 and Ag0.5Pb1.75GeS3Se Crystals, J. Mater. Sci. Mater. Electron., 2016, 27, p 9589-9592

    Article  Google Scholar 

  18. O.V. Parasyuk, L.D. Gulay, Y.E. Romanyuk, I.D. Olekseyuk, and L.V. Piskach, The Ag2Se–HgSe–GeSe2 System and Crystal Structures of the Compounds, J. Alloys Compd., 2003, 351, p 135-144

    Article  Google Scholar 

  19. L.D. Gulay, I.D. Olekseyuk, and O.V. Parasyuk, Crystal Structures of the Ag6HgGeSe6 and Ag6HgSiSe6 Compounds, J. Alloys Compd., 2002, 343, p 116-121

    Article  Google Scholar 

  20. O.V. Parasyuk, L.D. Gulay, Y.E. Romanyuk, and I.D. Olekseyuk, The Ag2Se–HgSe–SiSe2 System in the 0–60 mol.% SiSe2 Region, J. Alloys Compd., 2003, 348, p 157-166

    Article  Google Scholar 

  21. L.V. Piskach, O.V. Parasyuk, I.D. Olekseyuk, Y.E. Romanyuk, S.V. Volkov, and V.I. Pekhnyo, Interaction of Argyrodite Family Compounds with the Chalcogenides of II-b Elements, J. Alloys Compd., 2006, 421, p 98-104

    Article  Google Scholar 

  22. W.F. Kuhs, R. Nitsche, and K. Scheunemann, The Argyrodites—A New Family of Tetrahedrally Close-Packed Structures, Mater. Res. Bull., 1979, 14, p 241-248

    Article  Google Scholar 

  23. A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad Method—Development Of Thermodynamic Databases, Comput. Mater. Sci., 2013, 66, p 3-13

    Article  Google Scholar 

  24. H. Ipser, A. Mikula, and I. Katayama, Overview: The Emf Method as a Source of Experimental Thermodynamic Data, Calphad, 2010, 34, p 271-278

    Article  Google Scholar 

  25. I. Barin, Thermochemical Data of Pure Substance, VCH, Weinheim, 1995

    Book  Google Scholar 

  26. M.B. Babanly, Y.A. Yusibov, and N.B. Babanly, in Electromotive Force and Measurement in Several Systems, ed by S. Kara (InTech, 2011) p. 57–78. doi:10.5772/2109

  27. NKh Abrikosov and L.E. Shelimova, Semiconductor Materials Based on A IV B VI Compounds, Nauka, Moscow, 1975 (in Russian)

    Google Scholar 

  28. O.P. Kokhan, Interaction in Ag2X–BIVX2 Systems (BIV – Si, Ge, Sn; X – S, Se) and Properties of Compounds, Ph. D. Thesis (Inorganic Chemistry), Uzhgorod State University, Uzhgorod, 1996.

  29. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia, 1990, 27, p 3-10

    Article  ADS  Google Scholar 

  30. Diffractometr Stoe WinXPOW Version 221 Stoe Cie GmbH Darmstadt, 2007.

  31. W. Kraus and G. Nolze, PowderCell Window Version 23 Berl, Fed. Inst. Mater. Res. Test, Febr, 1999

    Google Scholar 

  32. E. Robinel, A. Kone, M.J. Duclot, and J.L. Souquet, Silver Sulfide Based Glasses:(II). Electrochemical Properties of GeS2-Ag2S-Agl Glasses: Transference Number Measurement and Redox Stability Range, J. Non-Cryst. Solids, 1983, 57, p 59-70

    Article  ADS  Google Scholar 

  33. M.V. Moroz, M.V. Prokhorenko, P.Y. Demchenko, and O.V. Reshetnyak, Thermodynamic Properties of Saturated Solid Solutions of Ag7SnSe5Br and Ag8SnSe6 Compounds in the Ag–Sn–Se–Br System Measured by the EMF Method, J. Chem. Thermodyn., 2017, 106, p 228-231

    Article  Google Scholar 

  34. M.V. Moroz, M.V. Prokhorenko, and S.V. Prokhorenko, Determination of thermodynamic properties of Ag3SBr superionic phase using EMF technique, Russ. J. Electrochem., 2015, 51, p 886-889

    Article  Google Scholar 

  35. F. Tesfaye, P. Taskinen, M. Aspiala, and D. Feng, Experimental Thermodynamic Study of Intermetallic Phases in the Binary Ag–Te System by an Improved EMF Method, Intermetallics, 2013, 34, p 56-62

    Article  Google Scholar 

  36. E.G. Osadchii and E.A. Echmaeva, The System Ag-Au-Se: Phase Relations Below 405 K and Determination of Standard Thermodynamic Properties of Selenides by Solid-State Galvanic Cell Technique, Am. Mineral., 2007, 92, p 640-647

    Article  ADS  Google Scholar 

  37. A.G. Morachevskiy, G.F. Voronin, V.A. Geiderich, and I.B. Kutsenok, Electrochemical Methods of Investigation in Thermodynamics of Metal Systems, Academkniga, Moscow, 2003

    Google Scholar 

  38. V.Ya. Anosov, M.I. Ozerova, and Yu.A. Fialkov, The Basics of Physico-Chemical Analysis, Nauka, Moscow, 1976 (in Russian)

  39. R. Fairman and B. Ushkov, Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glasses, Academic Press, London, 2004

    Google Scholar 

  40. Z.M. Aliyeva, S.M. Bagheri, Z.S. Aliev, I.J. Alverdiyev, Y.A. Yusibov, and M.B. Babanly, The Phase Equilibria in the Ag2S–Ag8GeS6–Ag8SnS6 System, J. Alloys Compd., 2014, 611, p 395-400

    Article  Google Scholar 

  41. V.A. Kireyev, Course of Physical Chemistry, Khimiya, Moscow, 1975, in Russian

    Google Scholar 

  42. MKh Karapetyantz, Chemical Thermodynamics, Goskhimizdat, Moscow, 1953 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Moroz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, M.V., Demchenko, P.Y., Prokhorenko, M.V. et al. Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method. J. Phase Equilib. Diffus. 38, 426–433 (2017). https://doi.org/10.1007/s11669-017-0563-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0563-6

Keywords

Navigation