Skip to main content
Log in

Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-Cu6Sn5 and ɛ-Cu3Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-Cu6Sn5 IMCs at the initial stage, the nucleation and growth of ɛ-Cu3Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-Cu3Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.L. Huang and F. Yang, Size Effect Model on Kinetics of Interfacial Reaction Between Sn-xAg-yCu Solders and Cu Substrate, Sci. Rep., 2014, 4, p 7117

    Article  ADS  Google Scholar 

  2. H.-Y. Hsiao, C.-M. Liu, H. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen, and K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper, Science, 2012, 336, p 1007-1010

    Article  ADS  Google Scholar 

  3. K.N. Tu, Reliability Challenges in 3D IC Packaging Technology, Microelectron. Reliab., 2011, 51, p 517-523

    Article  Google Scholar 

  4. M. Ohyama, M. Nimura, J. Mizuno, S. Shoji, T. Nonaka, Y. Shinba, and A. Shigetou, Evaluation of Hybrid Bonding Technology of Single-Micron Pitch with Planar Structure for 3D Interconnection. Microelectron. Reliab.

  5. K.N. Tu and T. Tian, Metallurgical Challenges in Microelectronic 3D IC Packaging Technology for Future Consumer Electronic Products, Sci. China Technol. Sci., 2013, 56, p 1740-1748

    Article  Google Scholar 

  6. W.D. MacDonald and T.W. Eagar, Transient Liquid Phase Bonding, Annu. Rev. Mater. Sci., 1992, 22, p 23-46

    Article  ADS  Google Scholar 

  7. R. Gagliano and M.E. Fine, Growth of η Phase Scallops and Whiskers in Liquid Tin-Solid Copper Reaction Couples, JOM, 2001, 53, p 33-38

    Article  Google Scholar 

  8. M.S. Park, M.K. Stephenson, C. Shannon, L.A. Cáceres Díaz, K.A. Hudspeth, S.L. Gibbons, J. Muñoz-Saldaña, and R. Arróyave, Experimental and Computational Study of the Morphological Evolution of Intermetallic Compound (Cu6Sn5) Layers at the Cu/Sn Interface Under Isothermal Soldering Conditions, Acta Mater., 2012, 60, p 5125-5134

    Article  Google Scholar 

  9. J. Görlich, G. Schmitz, and K.N. Tu, On the Mechanism of the Binary Cu/Sn Solder Reaction, Appl. Phys. Lett., 2005, 86, p 053106

    Article  ADS  Google Scholar 

  10. C. Zhang and G. Sun, Fabrication cost analysis for 2D, 2.5D, and 3D IC designs. In 3D Systems Integration Conference (3DIC), 2011 IEEE International; 2012; pp. 1-4.

  11. G.O.C. Iii and C.D. Sorensen, Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding, J. Mater. Sci., 2011, 46, p 5305-5323

    Article  ADS  Google Scholar 

  12. J.R. Davis, Copper and Copper Alloys, ASM International, Materials Park, 2001

    Google Scholar 

  13. J.-H. Shim and C.-S. Oh, Thermodynamic Assessment of the Cu-Sn System, Z. Fuer Met. Res. Adv. Tech., 1996, 87, p 205-212

    Google Scholar 

  14. Q. Yin, F. Gao, Z. Gu, E.A. Stach, and G. Zhou, In Situ Visualization of Metallurgical Reactions in Nanoscale Cu/Sn Diffusion Couples, Nanoscale, 2015, 7, p 4984-4994

    Article  ADS  Google Scholar 

  15. J.Y. Huh, K.K. Hong, Y.B. Kim, and K.T. Kim, Phase Field Simulations of Intermetallic Compound Growth During Soldering Reactions, J. Electron. Mater., 2004, 33, p 1161-1170

    Article  ADS  Google Scholar 

  16. M.S. Park and R. Arroyave, Formation and Growth of Intermetallic Compound Cu6Sn5 at Early Stages in Lead-Free Soldering, J. Electron. Mater., 2010, 39, p 2574-2582

    Article  ADS  Google Scholar 

  17. M. Ode, T. Koyama, H. Onodera, and T. Suzuki, Phase-field Modeling for Sn-Bi Soldering, J. Electron. Mater., 2003, 32, p 1534-1539

    Article  ADS  Google Scholar 

  18. J.P. Simmons, Y. Wen, C. Shen, and Y.Z. Wang, Microstructural Development Involving Nucleation and Growth Phenomena Simulated with the Phase Field Method, Mater. Sci. Eng. A, 2004, 365, p 136-143

    Article  Google Scholar 

  19. C.-C. Pan, C.-H. Yu, and K.-L. Lin, The Amorphous Origin and the Nucleation of Intermetallic Compounds Formed at the Interface During the Soldering of Sn–3.0Ag–0.5Cu on a Cu Substrate, Appl. Phys. Lett., 2008, 93, p 061912

    Article  ADS  Google Scholar 

  20. H. Lin, C. Lu, C. Liu, C. Chen, D. Chen, J.-C. Kuo, and K.N. Tu, Microstructure Control of Unidirectional Growth of η-Cu6Sn5 in Microbumps on 〈111〉 Oriented and Nanotwinned Cu, Acta Mater., 2013, 61, p 4910-4919

    Article  Google Scholar 

  21. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, Philadelphia, 2004

    Book  MATH  Google Scholar 

  22. M.S. Park and R. Arróyave, Concurrent Nucleation, Formation and Growth of Two Intermetallic Compounds (Cu6Sn5 and Cu3Sn) During the early Stages of Lead-Free Soldering, Acta Mater., 2012, 60, p 923-934

    Article  Google Scholar 

  23. M.S. Park and R. Arróyave, Multiphase Field Simulations of Intermetallic Compound Growth During Lead-Free Soldering, J. Electron. Mater., 2009, 38, p 2525-2533

    Article  ADS  Google Scholar 

  24. B.F. Dyson, T.R. Anthony, and D. Turnbull, Interstitial Diffusion of Copper in Tin, J. Appl. Phys., 1967, 38, p 3408

    Article  ADS  Google Scholar 

  25. J.S. Kang, R.A. Gagliano, G. Ghosh, and M.E. Fine, Isothermal Solidification of Cu/Sn Diffusion Couples to Form Thin-Solder Joints, J. Electron. Mater., 2002, 31, p 1238-1243

    Article  ADS  Google Scholar 

  26. Y.T. Chunjin Hang, Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process, J. Mater. Sci. Mater. Electron., 2013, 24, p 3905-3913

    Article  Google Scholar 

  27. V.I. Dybkov, Growth Kinetics of Chemical Compound Layers, Cambridge Int Science Publishing, Cambridge, 1998

    Google Scholar 

  28. N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, and W. Dong, Growth Kinetics of Cu6Sn5 Intermetallic Compound at Liquid-Solid Interfaces in Cu/Sn/Cu Interconnects Under Temperature Gradient, Sci. Rep., 2015, 5, p 13491

    Article  ADS  Google Scholar 

  29. D. Li, P. Franke, S. Fürtauer, D. Cupid, and H. Flandorfer, The Cu–Sn Phase Diagram Part II: New Thermodynamic Assessment, Intermetallics, 2013, 34, p 148-158

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the ADA cluster in the Texas A&M Supercomputing Facility, for providing computing resources useful in conducting the research reported in this paper. The authors acknowledge Dr. Thien Duong and Mrs. Kubra Karayagiz for useful discussions. This research was supported by the National Science Foundation under NSF Grant No. CMMI-1462255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymundo Arroyave.

Appendix

Appendix

The free energy densities per unit molar volume of individual phases are:

$$f_{L} = \left( { 1 - c} \right)G_{\text{Cu}}^{0L} + cG_{\text{Sn}}^{0L} + RT\left[ {\left( { 1 - c} \right) { \ln } \left( { 1 - c} \right) + c\ln c} \right] + c\left( { 1 - c} \right)[L_{0}^{L} + L_{ 1}^{L} \left( { 1 - 2c} \right) + L_{ 2}^{L} \left( { 1 - 4c + 4c^{ 2} } \right]$$
(11)
$$f_{\eta } = 2.0 \times 10^{ 5} \left( {c - 0. 4 3 5} \right)^{ 2} + 0. 5 4 5G_{\text{Cu}}^{\alpha } + 0. 4 5 5G_{\text{Sn}}^{\text{SER}} - 6 8 6 9. 5 - 0. 1 5 8 9T$$
(12)
$$f_{\varepsilon } = 2.0 \times 10^{ 5} \left( {c - 0. 2 4 9} \right)^{ 2} + 0. 7 5G_{\text{Sn}}^{\alpha } + 0. 2 5G_{\text{Sn}}^{\text{SER}} - 8 1 9 4. 2 - 0. 20 4 3T$$
(13)
$$f_{Cu} = \left( { 1 - c} \right)G_{\text{Cu}}^{\alpha } + cG_{\text{Sn}}^{\alpha } + RT\left[ {\left( { 1 - c} \right) { \ln } \left( { 1 - c} \right) + c\ln c} \right] + c\left( { 1 - c} \right)[L_{0}^{\alpha } + L_{ 1}^{\alpha } \left( { 1 - 2c} \right)]$$
(14)

where \(G_{\text{Cu}}^{\alpha }\) =  −19073, \(G_{\text{Sn}}^{\alpha }\) = −27280, \(G_{\text{Cu}}^{L}\) = −11083, \(G_{\text{Sn}}^{\text{SER}}\) = 346160, \(G_{\text{Sn}}^{L}\) = −28963, L α0  = −11448, L α1  = −11694, L L0  = −10487, L L1  = −18198, L L2  = 10528.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attari, V., Arroyave, R. Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging. J. Phase Equilib. Diffus. 37, 469–480 (2016). https://doi.org/10.1007/s11669-016-0475-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-016-0475-x

Keywords

Navigation