Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations

Abstract

The quaternary Q phase is an important precipitate phase in the Al-Cu-Mg-Si alloy system and its accurate thermodynamic description is crucial for further tailoring this material class for light-weight structural applications. In order to achieve an improved thermochemical parameter set of this phase, we used a combination of experimental measurements and first-principles calculations, which was focussed on the heat capacity. Its accurate experimental determination required the preparation of pure samples of Q phase and sophisticated calorimetric measurements. On the theoretical side, a simultaneous treatment of lattice vibrations within the quasiharmonic approximation, electronic excitations, and configuration entropy within the compound energy formalism were required to achieve a complete description of the heat capacity. The evaluation demonstrates the high predictive power of the first-principles as well as the Calphad modeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater Sci., 2004, 49, p 389-410

    Article  Google Scholar 

  2. 2.

    S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole, On the Precipitation-Hardening Behavior of the Al-Mg-Si-Cu Alloy AA6111, Metall. Mater. Trans. A, 2003, 34(13), p 751-763

    Article  Google Scholar 

  3. 3.

    A. Biswas, D.J. Siegel, and D.N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 2014, 75, p 322-336

    Article  Google Scholar 

  4. 4.

    C.-A. Gandin, Modeling of Solidification, Grain Structures and Segregation in Metallic Alloys, Comptes Rendus Phys., 2010, 11, p 216-225

    ADS  Article  Google Scholar 

  5. 5.

    L. Thuinet and H. Combeau, A New Model of Microsegregation for Macrosegregation Computation in Multicomponent Steels, Comput. Mater. Sci., 2009, 45, p 294-304, ibd. pp 285-293

    Article  Google Scholar 

  6. 6.

    T. Kraft, M. Rettenmayr, and H.E. Exner, An Extended Numerical Procedure for Predicting Microstructure and Microsegregation in Multicomponent Alloys, Model. Simul. Mater. Sci. Eng., 1996, 4, p 161-177

    ADS  Article  Google Scholar 

  7. 7.

    M. Rappaz and M. Rettenmayr, Simulation of Solidification, Curr. Opin. Solid State Mater. Sci., 1998, 3, p 275-282

    ADS  Article  Google Scholar 

  8. 8.

    A. Löffler, J. Gröbner, M. Hampl, H. Engelhardt, R. Schmid-Fetzer, and M. Rettenmayr, Solidifying Incongruently Melting Intermetallic Phases as Bulk Single Phases Using the Example of Al2Cu and Q-Phase in the Al-Mg-Cu-Si System, J. Alloys Compd., 2012, 515, p 123-127

    Article  Google Scholar 

  9. 9.

    C. Wolverton, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Mg-Zn Alloys, Acta Mater., 2001, 49, p 3129-3142

    Article  Google Scholar 

  10. 10.

    H.N. Thi, B. Drevet, J.M. Debierre, D. Camel, Y. Dabo, and B. Billia, Preparation of the Initial Solid-Liquid Interface and Melt in Directional Solidification, J. Cryst. Growth, 2003, 253, p 539-548

    ADS  Article  Google Scholar 

  11. 11.

    A. Löffler, K. Reuther, H. Engelhardt, D.M. Liu, and M. Rettenmayr, Resolidification of the Mushy Zone of Multiphase and Multicomponent Alloys in a Temperature Gradient—Experiments and Modeling, Acta Mater., 2015, 91, p p34-p40

    Article  Google Scholar 

  12. 12.

    M. Buchmann and M. Rettenmayr, Microstructure Evolution During Melting and Resolidification in a Temperature Gradient, J. Cryst. Growth, 2005, 284, p 544-553

    ADS  Article  Google Scholar 

  13. 13.

    D. Liu, Y. Su, X. Li, L. Luo, J. Guo, and H. Fu, Influence of Thermal Stabilization on the Solute Concentration of the Melt in Directional Solidification, J. Cryst. Growth, 2010, 312, p 3658-3664

    ADS  Article  Google Scholar 

  14. 14.

    G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, 47, p 558-561

    ADS  Article  Google Scholar 

  15. 15.

    G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50

    Article  Google Scholar 

  16. 16.

    G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186

    ADS  Article  Google Scholar 

  17. 17.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868

    ADS  Article  Google Scholar 

  18. 18.

    P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979

    ADS  Article  Google Scholar 

  19. 19.

    H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13, p 5188-5192

    ADS  Article  MathSciNet  Google Scholar 

  20. 20.

    L. Arnberg, B. Aurivillius, E. Wahlström, G. Malmros, J. Sjöblom, T.G. Strand, and V.F. Sukhoverkhov, The Crystal Structure of Al(x)Cu2 Mg(12-x)Si7 (h-AlCuMgSi), Acta Chem. Scand., 1980, 34a, p 1-5

    Article  Google Scholar 

  21. 21.

    B. Grabowski, T. Hickel, and J. Neugebauer, Ab Initio Study of the Thermodynamic Properties of Nonmagnetic Elementary fcc Metals: Exchange-Correlation-Related Error Bars and Chemical Trends, Phys. Rev. B, 2007, 76, p 024309

    ADS  Article  Google Scholar 

  22. 22.

    N.D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Phys. Rev., 1965, 137, p A1441

    ADS  Article  MathSciNet  Google Scholar 

  23. 23.

    B. Sundman, B. Jansson, and J.-O. Andersson, The Thermocalc Database System, CALPHAD, 1985, 9, p 153-190

    Article  Google Scholar 

  24. 24.

    T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, Advancing Density Functional Theory to Finite Temperatures: Methods and Applications in Steel Design, J. Phys.: Condens. Matter, 2012, 24, p 053202

    ADS  Google Scholar 

  25. 25.

    A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Understanding Anharmonicity in fcc Materials: From its Origin to Ab Initio Strategies Beyond the Quasiharmonic Approximation, Phys. Rev. Lett., 2015, 114, p 195901

    ADS  Article  Google Scholar 

  26. 26.

    A. Glensk, B. Grabowski, T. Hickel, J. Neugebauer, in preparation.

  27. 27.

    A. Zendegani, F. Körmann, T. Hickel, B. Hallstedt, J. Neugebauer, in preparation.

  28. 28.

    M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, J. Gröbner, M. Hampl, J. Neugebauer, and R. Schmid-Fetzer, Assessment of the Binary Mg-Si Phase Diagram, CALPHAD, 2012, 37, p 77-86

    Article  Google Scholar 

  29. 29.

    C. Ravi and C. Wolverton, First-Principles Study of Crystal Structure and Stability of Al-Mg-Si-(Cu) Precipitates, Acta Mater., 2004, 52, p 4213-4227

    Article  Google Scholar 

  30. 30.

    C. Ravi, C. Wolverton, Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys. Metall. Mater. Trans.A 2005, 36(8), p 2013-2023

  31. 31.

    K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, and L. Chen, Thermodynamic Description of the Al-Cu-Mg-Mn-Si Quinary System and Its Application to Solidification Simulation, Thermochim. Acta, 2011, 512, p 258-267

    Article  Google Scholar 

Download references

Acknowledgment

The funding of this work by the Deutsche Forschungsgemeinschaft (DFG) within the joint Project PAK 461 under Grant Nos. Re1261/7, Ne428/12, and Schm 588/35 is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tilmann Hickel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Löffler, A., Zendegani, A., Gröbner, J. et al. Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations. J. Phase Equilib. Diffus. 37, 119–126 (2016). https://doi.org/10.1007/s11669-015-0426-y

Download citation

Keywords

  • ab initio methods
  • CALPHAD approach
  • heat capacity
  • quaternary
  • thermodynamic assessment