Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 37, Issue 1, pp 19–24 | Cite as

Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600 °C

  • André Costa e SilvaEmail author
  • Daniel Coelho
  • Axel Kranzmann
  • Fernando Rizzo
Article

Abstract

In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is.

Keywords

CALPHAD approach corrosion decarburization DICTRA modeling experimental kinetics iron alloys kinetics multicomponent diffusion steel 

Notes

Acknowledgments

The authors thank the PROBRAL Program, CAPES, CNPq, FAPERJ, DAAD and the BAM for supporting this research. The help of Eric Lass, at NIST, who arc melted and rolled the steel samples is gratefully acknowledged.

References

  1. 1.
    B.G. Miller, Clean Coal, Butterworth-Heinemann, Oxford, 2011, ISBN 978-1856177108Google Scholar
  2. 2.
    IEA. Key World Energy World Statistics 2013. IEA. [S.l.], 2013Google Scholar
  3. 3.
    IEA. Tracking Clean Energy Progress 2013. IEA. [S.l.], 2013Google Scholar
  4. 4.
    D. Lüthi, M. le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker, High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years Before Present, Nature, 2008, 435, p 379-382CrossRefGoogle Scholar
  5. 5.
    P.J. Robinson and A. Henserson-Sellers, Contemporary Climatology, 2nd ed., Pearson Education Limited, Essex, 1999, ISBN 0-582-27631-4Google Scholar
  6. 6.
    NOAA Earth System Research Laboratory. NOAA Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html#mlo_data
  7. 7.
    J. Cook, D. Nuccitelli, S.A. Green, M. Richardson, B. Winkler, R. Painting, R. Way, P. Jacobs, and A. Skuce, Quantifying the Consensus on Anthropogenic Global Warming in the Scientific Literature, Environ Res Lett, 2013, 8, p 1-7CrossRefGoogle Scholar
  8. 8.
    IEA. World Energy Outlook 2013 Factsheet. IEA. [S.l.], 2013Google Scholar
  9. 9.
    D. Zhang, Ultra-supercritical Coal Power Plants: Materials, Technologies and Optimisation, 1st ed., Woodhead Publishing, Cambridge, 2013, ISBN 0857091166CrossRefGoogle Scholar
  10. 10.
    K. Foy and E. Yantovski, History and State-of-the-Art of Fuel Fired Zero Emission Power Cycles, Int J Thermodyn, 2006, 9(2), p 37-63Google Scholar
  11. 11.
    M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, and A.D. Jensen, Oxy-Fuel Combustion of Solid Fuels, Prog Energy Combust Sci, 2010, 36, p 581-625CrossRefGoogle Scholar
  12. 12.
    V. White, L. Torrente-Murciano, D. Sturgeon, and D. Chadwick, Purification of Oxyfuel-Derived CO2, Int J Greenh Gas Control, 2010, 4, p 137-142CrossRefGoogle Scholar
  13. 13.
    V. White, A. Wright, S. Tappe, and J. Yan, The Air Products Vattenfall Oxyfuel CO2 Compression and Purification Pilot Plant at Schwarze Pumpe, Energy Proc, 2013, 37, p 1490-1499CrossRefGoogle Scholar
  14. 14.
    J. Yan, R.F. Anheden, F. Starfelt, R. Preusche, H. Ecke, N. Padban, D. Kosel, N. Jentsch, and G. Lindgrenet, Flue Gas Cleaning for CO2 Capture from Coal-Fired Oxyfuel Combustion Power Generation, Energy Proc, 2011, 4, p 900-907CrossRefGoogle Scholar
  15. 15.
    D.A. Voss, E.P. Butler, and T.E. Mitchell, The Growth of Hematite Blades During the High Temperature Oxidation of Iron, Metall Trans A, 1982, 13A, p 929-935CrossRefADSGoogle Scholar
  16. 16.
    A. Kather and S. Kownatzki, Assessment of the Different Parameters Affecting the CO2 Purity from Coal Fired Oxyfuel Process, Int J Greenh Gas Control, 2001, 5, p S204-S209Google Scholar
  17. 17.
    D. Hünert and A. Kranzmann, Influence of Pressure and Chromium Content on Corrosion Reactions at 600 °C in a CO 2 -H 2 O Atmosphere. Corrosion 2008, Nace, New Orleans, 2008Google Scholar
  18. 18.
    D. Hünert, Korrosionsprozesse und Aufkohlung von ferritisch-martensitischen Stählen in H 2 O-CO 2 Atmosphären, BAM, Berlin, 2010Google Scholar
  19. 19.
    J. Pirón-Abellán, T. Olszewski, H.J. Penkalla, G.H. Meier, L. Singheister, and W.J. Quadakkers, Scale Formation Mechanisms of Martensitic Steels in High CO2/H2O-Containing Gases Simulating Oxyfuel Environments, Mater High Temp, 2009, 26(1), p 63-72CrossRefGoogle Scholar
  20. 20.
    N. Mu, K.Y. Jung, N.M. Yanar, G.H. Meier, F.S. Pettit, and G.R. Holcomb, Water Vapor Effects on the Oxidation Behavior of Fe-Cr and Ni-Cr Alloys in Atmospheres Relevant to Oxy-Fuel Combustion, Oxid Met, 2012, 78, p 221-237CrossRefGoogle Scholar
  21. 21.
    G.H. Meier, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J.P. Abellán, T. Olszewski, L.N. Hierro, W.J. Quadakkers, and G.R. Holcomb, Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloys, Oxid Met, 2010, 74, p 319-340CrossRefGoogle Scholar
  22. 22.
    I. Wolf and H.J. Grabke, A Study on the Solubility and Distribution of Carbon in Oxides, Solid State Commun, 1985, 54(1), p 5-10CrossRefADSGoogle Scholar
  23. 23.
    T. Gheno, D. Monceau, J. Zhang, and D.J. Young, Carburisation of Ferritic Fe-Cr Alloys by Low Carbon Activity Gases, Corros Sci, 2011, 53(9), p 2767-2777CrossRefGoogle Scholar
  24. 24.
    Z. Zeng, K. Natesan, Z. Cai, D. Gosztola, R. Cook, and J. Hiller, Effect of Element Diffusion Through Metallic Networks During Oxidation of Type 321 Stainless Steel, J Mater Eng Perform, 2014, 23(4), p 1247-1262CrossRefGoogle Scholar
  25. 25.
    A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J Phase Equilib, 2000, 21(3), p 269-280CrossRefGoogle Scholar
  26. 26.
    Thermocalc Software AB. TCFE7. Stockholm, 2012. DatabaseGoogle Scholar
  27. 27.
    Thermocalc Software AB. MOBFE2. Stockholm, 2013. DatabaseGoogle Scholar
  28. 28.
    B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190CrossRefGoogle Scholar
  29. 29.
    H. Larsson and L. Höglund, Multiphase Diffusion Simulations in 1D Using the DICTRA Homogenization Model, Calphad, 2009, 33(3), p 495-501CrossRefGoogle Scholar
  30. 30.
    I. Wolf, J. Grabke, and P. Schmidt, Carbon Transport Through Oxide Scales on Fe-Cr Alloys, Oxid Met, 1988, 29(3-4), p 289-306CrossRefGoogle Scholar
  31. 31.
    L. Sproge and J. Ågren, Experimental and Theoretical Studies of Gas Consumption in the Gas Carburizing Process, J Heat Treat, 1988, 6(1), p 9-19CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • André Costa e Silva
    • 1
    Email author
  • Daniel Coelho
    • 2
  • Axel Kranzmann
    • 3
  • Fernando Rizzo
    • 2
    • 3
  1. 1.EEIMVR-UFFVolta RedondaBrazil
  2. 2.PUC-RioRio de JaneiroBrazil
  3. 3.BAMBerlinGermany

Personalised recommendations