Skip to main content
Log in

Interdiffusion Between Potential Diffusion Barrier Mo and U-Mo Metallic Fuel Alloy for RERTR Applications

  • Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor Program. Previous investigation has shown that the interdiffusion between U and Mo in γ(bcc)-U solid solution is very slow. This investigation explored interdiffusional behavior, especially in regions with high Mo concentration, and the potential application of Mo as a barrier material to reduce the interaction between U-Mo fuel and Al alloys matrix. Solid-to-solid U-10wt.%Mo versus Mo diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for 960, 720, 480, 240, 96 h, respectively. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 22 to 32 at.%, the interdiffusion coefficient decreased while the activation energy increased. The growth rate constant of the interdiffusion zone between U-10wt.%Mo versus Mo was also determined and compared to be 104-105 times lower than those of U-10wt.%Mo versus Al and U-10wt.%Mo versus Al-Si systems. Other desirable physical properties of Mo as a barrier material, such as neutron adsorption rate, melting point and thermal conductivity, are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Keiser, S. Hayes, M. Meyer, and C. Clark, High-Density, Low-Enriched Uranium Fuel for Nuclear Research Reactors, JOM, 2003, 55, p 55–58

    Article  Google Scholar 

  2. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, and T.C. Wiencek, Development of Very-High-Density Low-Enriched-Uranium Fuels, Nucl. Eng. Des., 1997, 178, p 119–126

    Article  Google Scholar 

  3. D. Wachs, D. Keiser, M. Meyer, D. Burkes, C. Clark, G. Moore, J.-F. Jue, T. Totev, G. Hofman, T. Wiencek, Y.S. Kim, and J. Snelgrove, High Density Fuel Development for Research Reactors, Global 2007-Advanced Nuclear Fuel Cycles and Systems, 2007

  4. M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, and K.H. Kim, Low-Temperature Irradiation Behavior of Uranium-Molybdenum Alloy Dispersion Fuel, J. Nucl. Mater., 2002, 304, p 221–236

    Article  ADS  Google Scholar 

  5. A. Leenaers, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen, and M. Verwerft, Post-irradiation Examination of Uranium-7 wt% Molybdenum Atomized Dispersion Fuel, J. Nucl. Mater., 2004, 335, p 39–47

    Article  ADS  Google Scholar 

  6. E. Perez, B. Yao, D.D. Keiser, and Y.H. Sohn, Microstructural Analysis of As-Processed U-10 wt.%Mo Monolithic Fuel Plate in AA6061 Matrix with Zr Diffusion Barrier, J. Nucl. Mater., 2010, 402, p 8–14

    Article  ADS  Google Scholar 

  7. D.D. Keiser, J.F. Jue, B. Yao, E. Perez, Y. Sohn, and C.R. Clark, Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500 Degrees C, J. Nucl. Mater., 2011, 412, p 90–99

    Article  ADS  Google Scholar 

  8. B. Yao, E. Perez, D.D. Keiser, Jr., J.-F. Jue, C.R. Clark, N. Woolstenhulme, and Y. Sohn, Microstructure Characterization of As-Fabricated and 475 °C Annealed U-7 wt.% Mo Dispersion Fuel in Al-Si Alloy Matrix, J. Alloy. Compd., 2011, 509, p 9487–9496

    Article  Google Scholar 

  9. E. Perez, D. Keiser, and Y. Sohn, Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs Al Diffusion Couples Annealed at 873 K (600 °C), Metall. Mater. Trans. A, 2011, 42, p 3071–3083

    Article  Google Scholar 

  10. A. Leenaers, S. Van den Berghe, W. Van Renterghem, F. Charollais, P. Lemoine, C. Jarousse, A. Rohrmoser, and W. Petry, Irradiation Behavior of Ground U(Mo) Fuel With and Without Si Added to the Matrix, J. Nucl. Mater., 2011, 412, p 41–52

    Article  ADS  Google Scholar 

  11. X. Liu, T.C. Lu, Z.H. Xing, and D.Z. Qian, Effects of Different Irradiation Conditions on Swelling Performance of U(10)Mo-Al Dispersion Fuel, Rare Met. Mater. Eng., 2011, 40, p 1125

    Google Scholar 

  12. F. Mazaudier, C. Proye, and F. Hodaj, Further Insight into Mechanisms of Solid-State Interactions in UMo/Al System, J. Nucl. Mater., 2008, 377, p 476–485

    Article  ADS  Google Scholar 

  13. C. Komar Varela, M. Mirandou, S. Aricó, S. Balart, and L. Gribaudo, Interdiffusion Between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 Alloy, J. Nucl. Mater., 2009, 395, p 162–168

    Article  ADS  Google Scholar 

  14. Y. Kim, G. Hofman, H. Ryu, and S. Hayes, Irradiation-Enhanced Interdiffusion in the Diffusion Zone of U-Mo Dispersion Fuel in Al, J. Phase Equilib. Diffus., 2006, 27, p 614–621

    Google Scholar 

  15. H. Ryu, J. Park, C. Kim, Y. Kim, and G. Hofman, Diffusion Reaction Behaviors of U-Mo/Al Dispersion Fuel, J. Phase Equilib. Diffus., 2006, 27, p 651–658

    Google Scholar 

  16. K. Huang, D.D. Keiser, Jr., and Y.H. Sohn, Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effects in γ(bcc) Uranium-Molybdenum Alloy, Metall. Mater. Trans. A, 2013, 44A, p 738–746

    Article  ADS  Google Scholar 

  17. E.A. Brandes and G.B. Brook, Ed., Smithells Metals Reference Book, 1992

  18. J.R. Davis, Ed., ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH, 1992

  19. K. Huang, Y. Park, A. Ewh, B.H. Sencer, J.R. Kennedy, K.R. Coffey, and Y.H. Sohn, Interdiffusion and Reaction Between Uranium and Iron, J. Nucl. Mater., 2012, 424, p 82–88

    Article  ADS  Google Scholar 

  20. C. Wagner, The Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Metall., 1969, 17, p 99–107

    Article  Google Scholar 

  21. P. Shewmon, Diffusion in Solids, Wiley, New York, 1989

    Google Scholar 

  22. E. Perez, D.D.J. Keiser, B. Yao, and Y.H. Sohn, Interdiffusion in Diffusion Couples: U-Mo v. Al and Al-Si, RERTR 2009 Beijing, China, 2009

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Authors also acknowledge the editorial review and revision contribution from Ms. Megan A. Boye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Park, Y., Keiser, D.D. et al. Interdiffusion Between Potential Diffusion Barrier Mo and U-Mo Metallic Fuel Alloy for RERTR Applications. J. Phase Equilib. Diffus. 34, 307–312 (2013). https://doi.org/10.1007/s11669-013-0236-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-013-0236-z

Keywords

Navigation