Skip to main content
Log in

Intrinsic and Interdiffusion in Cu-Sn System

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Solid-solid diffusion couples assembled with disks of copper, tin and intermetallics (Cu3Sn and Cu6Sn5) were employed to investigate the Kirkendall effect in the copper-tin system at the temperature of 200 °C. In the Cu(99.9%)/Sn diffusion couple, inert alumina particles used as markers were identified in the Cu6Sn5 phase, while microvoids were observed at the Cu/Cu3Sn interface. The Cu(99.9%)/Sn and Cu(99.9%)/Cu6Sn5 diffusion couples annealed at 200 °C for 10 days were analyzed for intrinsic diffusion coefficients of Cu and Sn in the Cu6Sn5 and Cu3Sn phases, respectively with due consideration of changes in molar volume. Interdiffusion, integrated and effective interdiffusion coefficients were also calculated for the intermetallic phases. Diffusion couples annealed at 125-400 °C for various times were analyzed for the kinetic parameters such as growth rate constants and activation energies for the formation of Cu3Sn and Cu6Sn5 phases. Uncertainties in the calculated intrinsic diffusivities of Cu and Sn arise mainly from the non-planar morphologies of the interfaces and the non-planar distribution of the markers. Intrinsic diffusion coefficients based on average locations of the marker plane indicate that Cu is the faster diffusing component than Sn in both the Cu3Sn and Cu6Sn5 phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Xu and A. Van der Ven, First-Principles Investigation of Migration Barriers and Point Defect Complexes in B2-NiAl, Intermetallics, 2009, 17(5), p 319-329

    Article  Google Scholar 

  2. R.S. Kejun Zeng, T.-C. Chiu, D. Edwards, K. Ano, and K.N. Tu, Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability, J. Appl. Phys., 2005, 97(2), p 024508-8

    ADS  Google Scholar 

  3. Th. Massalski, Ed., Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, OH, 1986

  4. P. Borgesen and D.W. Henderson, Fragility of Lead-Free Solder Joints, Binghamton University, New York, 2004

    Google Scholar 

  5. L. Xu and J.H.L. Pang, Effect of Intermetallic and Kirkendall Voids Growth on Board Level Drop Reliability for SnAgCu Lead-Free BGA Solder Joint, 56th Electronic Components and Technology Conference and Proceedings, 2006, p 275-282

  6. Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, Kirkendall Voids and Cu/Solder Interface and Their Effects on Solder Joint Reliability, 55th Proceedings of Electronic Components and Technology Conference, 2005, p 415-420

  7. P. Borgesen, L. Yin, P. Kondos, D.W. Henderson, G. Servis, J. Wang, and K. Srihari, Sporadic Degradation in Board Level Drop Reliability—Those Aren’t All Kirkendall Voids, 57th Electronic Components and Technology Conference and Proceedings, 2007, p 136-146

  8. C.A. Handwerker, E. Erk, A. Hess, A. Squire, and M. Yarbrough, Void Formation: Emerging Issues in Materials Compatibility and Reliability of PB-Free Assembllies, Going Green Care Innovation, Vienna, Austria, 2006

  9. Y. Liu, J. Wang, P. Kondos, P. Borgesen, D.W. Handerson, E.J. Cotts, and N. Dimitrov, Influence of Plating Parameters and Solution Chemistry on the Voiding Propensity at Electrodeposited Copper-Solder Interface, J. Appl. Electrochem., 2008, 38(12), p 1695-1705

    Article  Google Scholar 

  10. S. Kumar, C.A. Handwerker, X. Nie, J. Smetana, D. Love, J. Watkowski, R. Martinez, and R. Parker, Microvoid Formation at Electrodeposited Copper-Solder Interfaces during Annealing: A Preliminary Study of the Root Cause, SMTA International Conference and Proceedings, Orlando, Vol 10, 2008, p 544-553

  11. A.G. Guy, Kirkendall Effect in Cu-Sn Alloys, Scripta Metall., 1983, 17(7), p 967-968

    Article  MathSciNet  Google Scholar 

  12. K. Hoshino, A.Y. Iijima, and K.I. Hirano, Inter-Diffusion and Kirkendall Effect in Cu-Sn Alloys, Trans. Jpn. Inst. Met., 1980, 21(10), p 674-682

    Google Scholar 

  13. L.C.C. Dasilva and R.F. Mehl, Interface and Marker Movements in Diffusion in Solid Solutions of Metals, J. Met., 1951, 3(2), p 155-173

    Google Scholar 

  14. M. Onishi and M. Fujibuchi, Reaction-Diffusion in the Cu-Sn System, Trans. Jpn. Inst. Met., 1975, 16, p 539-547

    Google Scholar 

  15. A. Paul, The Kirkendall Effect in Solid State Diffusion, Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 2004

  16. A. Paul, C. Ghosh, and W.J. Boettinger, Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System, Metall. Mater. Trans. A, 2011, 42A, p 952-963

    Google Scholar 

  17. Properties and Selection: Nonferrous Alloys and Pure Metals, Metal Handbooks, Vol 2, 9th ed., ASM, 1979

  18. P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metals Park, OH, 1985

    Google Scholar 

  19. Z.S. Mei, A.J. Sunwoo, and J.W. Morris, Analysis of Low-Temperature Intermetallic Growth in Copper-Tin Diffusion Couples, Metall. Trans. A, 1992, 23, p 857-864

    Google Scholar 

  20. L. Boltzmann, Wiedemanns Ann. Phys., 1894, 53, p 959

    Article  Google Scholar 

  21. C. Matano, The Relation Between the Diffusion Coefficients and Concentrations of Solid Metals, Jpn. J. Phys., 1933, 8, p 109-113

    Google Scholar 

  22. F.J.A. den Broeder, A General Simplification and Improvement of the Matano-Boltzmann Method in the Determination of the Interdiffusion Coefficients in Binary Systems, Scripta Metall., 1969, 3(5), p 321-325

    Article  Google Scholar 

  23. F. Sauer and V. Freise, Diffusion in Binaren Gemischen Mit Volumenanderung, Zeitschrift Fur Elektrochemie, 1962, 66(4), p 353-363, in German

    Google Scholar 

  24. F.J.J. Van Loo, On the Determination of Diffusion Coefficients in a Binary Metal System, Acta Metall., 1970, 18(10), p 1107-1111

    Article  Google Scholar 

  25. A.G. Guy, Treatment of Diffusion Considering Changes in Atomic Volume, Scripta Metall., 1971, 5(4), p 279-281

    Article  MathSciNet  Google Scholar 

  26. C. Wagner, Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Metall., 1969, 17(2), p 99-107

    Article  Google Scholar 

  27. S. Kumar, K. Kulkarni, C. Handwerker, M. Dayananda, Diffusion Analysis of Cu-Sn System, Materials Science and Technology Conference and Proceedings, Detroit, MI, 2007, p 493-504

  28. A.G. Guy, R.T. deHoff, and C.B. Smith, ASM Trans. Quart., 1968, 61, p 314-320

    Google Scholar 

  29. R.L. Fogelson, Fizika metallov i metallovedeni, 1965, 19, p 212-217, in Russian

    Google Scholar 

  30. T. Heumann, Z. Physik. Chem., 1952, 201, p 168-189, in German

    Google Scholar 

  31. M.A. Dayananda, Average Effective Interdiffusion Coefficients in Binary and Multicomponent Alloys, Defect Diffus. Forum, 1993, 95-98, p 521-536

    Article  Google Scholar 

  32. R.J. Schaefer, F.S. Biancaniello, and R.D. Jiggetts, Intermetallic Compounds Formed in Solder Joints—Preparation of Single Phase Samples, Metal Science of Joining, Proceedings of TMS Symposium, Cincinnati, 1991

  33. P.G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company, Inc, New York, 1963

    Google Scholar 

  34. M.A. Dayananda and C.W. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples, Metall. Trans. A, 1979, 10(9), p 1333-1339

    Article  Google Scholar 

  35. M.A. Dayananda, Atomic Mobilities in Multicomponent Diffusion and Their Determination, Trans. Met. Soc. AIME, 1968, 242, p 1369-1372

    Google Scholar 

  36. J. Philibert, Atom Movements: Diffusion and Mass Transport in Solids, Monographies de physique, Les Ulis, France, 1991, p 238

  37. L.S. Darken, Diffusion, Mobility, and Their Interrelation Through Free Energy in Binary Metallic Systems, Trans. Met. Soc. AIME, 1948, 175, p 184-201

    Google Scholar 

  38. P.C. Tortorici and M.A. Dayananda, Growth of Silicides and Interdiffusion in the Mo-Si System, Metall. Mater. Trans. A, 1999, 30A, p 545-550

    Article  Google Scholar 

  39. I. Kawakatsu and T. Osawa, Wettability of Liquid Tin on Solid Copper, Trans. JIM, 1973, 14, p 114-119

    Google Scholar 

  40. E. Starke and H. Wever, Z. Metallk., 1964, 55, p 107-113

    Google Scholar 

Download references

Acknowledgments

The support of the High Density Packaging User Group (HDPUG) International for this research is gratefully acknowledged, as is the generosity of William Boettinger and Maureen Williams of NIST for providing the bulk, single phase intermetallic materials and of William Boettinger, C. Ghosh and Aloke Paul in sharing a preprint of their paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Handwerker, C.A. & Dayananda, M.A. Intrinsic and Interdiffusion in Cu-Sn System. J. Phase Equilib. Diffus. 32, 309–319 (2011). https://doi.org/10.1007/s11669-011-9907-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-011-9907-9

Keywords

Navigation