Skip to main content
Log in

Phase Relations in the ZrO2-Nd2O3-Y2O3 System: Experimental Study and Advanced Thermodynamic Modeling

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase equilibria in the ZrO2-Nd2O3-Y2O3 system at 1523-1873 K have been investigated by x-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Temperatures of phase transformations were determined by differential thermal analysis. Temperatures of invariant reactions in the ZrO2-Nd2O3 system F = A + Pyr and H = F + A were determined as 1763 and 2118 K respectively and thermodynamic parameters of phases were re-assessed. Phase transformations in ternary systems were determined at 1732 K for composition ZrO2-48.46Nd2O3-5.38Y2O3 (mol%) and at 1744 and 1881 K for composition ZrO2-79.09Nd2O3-2.75Y2O3 (mol%). They were interpreted using XRD investigation before and after DTA as Pyr + B → F, Pyr → F and A → B, respectively. The solubility of the Y2O3 in pyrochlore phase was found to exceed 10 mol%. The thermodynamic parameters of the ZrO2-Nd2O3-Y2O3 system were reassessed taking into account solubility of Y2O3 in the Nd2Zr2O7 pyrochlore phase (Pyr). It is assumed that Y3+ substitutes Nd3+ and Zr4+ in their preferentially occupied sublattices. Ternary parameter was introduced into fluorite phase (F) for better reproducing of phase equilibria. Mixing parameters were reassessed for phase A (Nd2O3 based solution), monoclinic phase B and cubic phase C (Y2O3 based solution). The isothermal sections calculated for the ZrO2-Nd2O3-Y2O3 system are in the reasonable agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.G. Levi, Emerging Materials and Processes for Thermal Barrier System, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 77-91

    Article  ADS  Google Scholar 

  2. N.R. Rebollo, A.S. Gandhi, and C.G. Levi, Phase Stability Issues in Emerging TBC Systems, High Temperature Corrosion and Materials Chemistry IV, Electrochemical Society Proceedings, Vol. PV-2003-16, E.J. Opila, P. Hou, T. Maruyama, B. Pieraggi, M. McNallan, D. Shifler, and E. Wuchina, Ed., 2003, p 431-442

  3. K.A. Khor and J. Yang, Rapidly Solidified Neodymia-Stablised Zirconia Coatings Prepared by DC Plasma Spaying, Surf. Coat. Technol., 1997, 96, p 313-322

    Article  Google Scholar 

  4. T. Xu, J. Vleugels, O. Van der Biest, Y. Kann, and P. Wang, Phase Stability and Mechanical Properties of TZP with a Low Mixed Nd2O3/Y2O3 Stabiliser Content, J. Eur. Ceram. Soc., 2006, 26, p 1205-1211

    Article  Google Scholar 

  5. Q. Xu, W. Pan, J. Wang, Ch. Wan, L. Qi, and H. Mia, Rare Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89, p 340-342

    Article  Google Scholar 

  6. T. Xu, J. Vleugels, O. Van der Biest, and P. Wang, Mechanical Properties of Nd2O3/Y2O3-Coated Zirconia Ceramics, Mater. Sci. Eng. A, 2004, 374, p 239-243

    Article  Google Scholar 

  7. Y. Hinatsu and T. Muromura, Phase Relations in the Systems ZrO2-Y2O3-Nd2O3 and ZrO2-Y2O3-CeO2, Mater. Res. Bull., 1986, 21, p 1343-1349

    Article  Google Scholar 

  8. S. Lutique, R.J.M. Konings, V.V. Rondinella, J. Somers, and T. Wiss, The Thermal Conductivity of Nd2Zr2O7 Pyrochlore and the Thermal Behaviour of Pyrochlore-Based Inert Matrix Fuel, J. Alloys Compd., 2003, 352, p 1-5

    Article  Google Scholar 

  9. O. Fabrichnaya, G. Savinykh, G. Schreiber, and H.J. Seifert, Phase Relations in the ZrO2-Nd2O3-Y2O3 System: Experimental Study and CALPHAD Assessment, Int. J. Mater. Res., 2010, 101, p 1354-1360

    Article  Google Scholar 

  10. B.P. Mandal, P.S.R. Krishna, and A.K. Tyagi, Order-Disorder Transition in the Nd2-yYyZr2O7 System: Probed by X-ray Diffraction and Raman Spectroscopy, J. Solid State Chem., 2010, 183, p 41-45

    Article  ADS  Google Scholar 

  11. M. Hillert, Compound Energy Formalism, J. Alloys Compd., 2001, 320, p 161-176

    Article  Google Scholar 

  12. O. Fabrichnaya and H.J. Seifert, Assessment of Thermodynamic Functions in the ZrO2-Nd2O3-Al2O3 System, CALPHAD, 2008, 3, p 142-151

    Article  Google Scholar 

  13. O. Fabrichnaya, G. Savinykh, G. Schreiber, M. Dopita, and H.J. Seifert, Experimental Investigation and Thermodynamic Modelling in the ZrO2-La2O3-Y2O3 System, J. Alloys Compd., 2010, 493, p 263-271

    Article  Google Scholar 

  14. O. Fabrichnaya, Ch. Wang, M. Zinkevich, C.G. Levi, and F. Aldinger, Phase Equilibria and Thermodynamic Properties of the ZrO2-GdO1.5-YO1.5 System, J. Phase Equilibria Diffus., 2005, 26, p 591-604

    Google Scholar 

  15. O. Fabrichnaya, M. Zinkevich, and F. Aldinger, Thermodynamic Modelling in the ZrO2-La2O3-Y2O3-Al2O3 System, Int. J. Mater. Res., 2007, 98, p 838-846

    Article  Google Scholar 

  16. A. Navrotsky, Thermodynamic Insights into Refractory Ceramic Materials Based on Oxides with Large Tetravalent Cations, J. Mater. Chem., 2005, 15, p 1883-1890

    Article  Google Scholar 

  17. A. Rouanet, High Temperature Properties of Zirconia-Neodimium Sesquioxide Oxide Systems, C. R. Acad. Sci. Paris, Ser. C, 1970, t.270(9), p 802-805

  18. Ch. Wang, “Experimental and Computational Phase Studies of the ZrO2-Based Systems for Thermal Barrier Coatings”, Ph.D. Thesis, Stuttgart University, Germany, 2006

  19. I.A. Davtyan, V.B. Glushkova, and E.K. Keler, A Study of the Nd2O3-ZrO2 System. Investigation of the Regions Rich in Zirconium Dioxide, Inorg. Mater., 1965, 1(5), p 679-685

    Google Scholar 

  20. V.B. Glushkova, I.A. Davtyan, and E.K. Keler, Study of the System Nd2O3-ZrO2. Investigation of Regions Rich in Neodymium Oxide, Inorg. Mater., 1965, 1(11), p 1766-1774

    Google Scholar 

  21. A. Rouanet, Contribution to Study of Zirconium Oxides of Lanthanides Close to Melting Point, Rev. Int. Hautes Temp. Refract., 1971, 8, p 161-180

    Google Scholar 

  22. A.M. Gavrish, N.V. Gul’ko, and L.A. Tarasova, X-ray Diffraction and Crystal-Optical Investigation of Phase Relations in the Nd2O3-ZrO2 System, Russ. J. Inorg. Chem., 1981, 26, p 1785-1788

    Google Scholar 

  23. A.M. Gavrish, L.S. Alekseenko, L.A. Tarasova, and G.P. Orekhova, Structure and Electrical Resistance of Solid Solutions in the ZrO2-Nd2O3 System, Inorg. Mater., 1982, 18(2), p 214-216

    Google Scholar 

  24. E.I. Zoz, E.N. Fomichev, A.A. Kalashnik, and G.G. Eliseeva, The Structure and Properties of Lanthanide Zirconates and Hafnates, Russ. J. Inorg. Chem., 1982, 27, p 54-56

    Google Scholar 

  25. E.R. Andrievskaya and L.M. Lopato, Influence of Composition on the TM Transformation in the System ZrO2-Ln2O3 (Ln = La, Nd, Sm, Eu), J. Mater. Sci., 1995, 30, p 2591-2596

    Article  ADS  Google Scholar 

  26. J. Katamura, T. Seri, and T. Sakuma, The Cubic-Tetragonal Phase Equilibria in the System ZrO2-R2O3 (R = Y, Gd, Sm, Nd) System, J. Phase Equilibria, 1995, 16, p 315-319

    Article  Google Scholar 

  27. R.M. Leckie, S. Kraemer, M. Ruhle, and C.G. Levi, Thermochemical Compatibility Between Alumina and ZrO2-GdO3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53, p 3281-3292

    Article  Google Scholar 

  28. M. Zinkevich, Thermodynamics of Rare Earth Sesquioxides, Prog. Mater. Sci., 2007, 52, p 597-647

    Article  Google Scholar 

  29. A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 2001, 15, p 317-425

    Article  Google Scholar 

Download references

Acknowledgment

This study was financially supported by DFG project SE 647/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Fabrichnaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabrichnaya, O., Savinykh, G., Schreiber, G. et al. Phase Relations in the ZrO2-Nd2O3-Y2O3 System: Experimental Study and Advanced Thermodynamic Modeling. J. Phase Equilib. Diffus. 32, 284–297 (2011). https://doi.org/10.1007/s11669-011-9903-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-011-9903-0

Keywords

Navigation