Assessing Concentration Dependence of FCC Metal Alloy Diffusion Coefficients Using Kinetic Monte Carlo


Intrinsic diffusion coefficients have been calculated for a solid solution binary fcc metal alloy with vacancies using grand canonical and kinetic Monte Carlo (MC) methods for a variety of model Hamiltonians. Model Hamiltonians include a kinetically and thermodynamically ideal case, solute-vacancy attraction and repulsion, and solute-solute attraction and repulsion. These model Hamiltonians are chosen to have constant average activation energies in order to focus on contributions from other thermodynamic and kinetic factors. The thermodynamic factor calculated using MC is compared to a mean-field regular solution model. It is shown that the mean-field model accurately predicts the thermodynamic factors for each model alloy Hamiltonian except for the alloys with a solute-solute interaction and concentration that are in the spinodal region (as predicted by the regular solution model). The MC determined concentration-dependent intrinsic diffusion coefficients are compared to values determined from the dilute five-frequency model and Darken and Manning analytical approximations. The results indicate that for a solid solution with known average barriers and vacancy concentration, Darken and Manning approximation-based analytic expressions and mean-field theory can be used to predict concentration-dependent diffusion coefficients within a factor of approximately three, provided the system is outside of the spinodal region. The good accuracy of this approximate approach follows from the fact that the thermodynamic factor is the main contribution to the concentration dependence of the diffusion constants, and that this thermodynamic factor is well described by mean-field theory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    R.E. Howard and A.B. Lidiard, Matter Transport in Solids, Rep. Prog. Phys., 1964, 27, p 161-240.

    Article  ADS  Google Scholar 

  2. 2.

    A. Van der Ven, J.C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Nondilute Diffusion from First Principles: Li Diffusion in LixTiS2, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, p 104306.

    ADS  Google Scholar 

  3. 3.

    J.R. Manning, Correlation Factors for Diffusion in Nondilute Alloys, Phys. Rev. B, 1971, 4(4), p 1111-1121.

    Article  ADS  Google Scholar 

  4. 4.

    A.B. Lidiard, Impurity Diffusion in Crystals (Mainly Ionic Crystals with the Sodium Chloride Structure), Philos. Mag., 1955, 46, p 1218-1237

    Google Scholar 

  5. 5.

    A.D. LeClaire and A.B. Lidiard, Correlation Effects in Diffusion in Crystals, Philos. Mag., 1956, 1(6), p 518-527 (8th series).

  6. 6.

    A.D. LeClaire, Solute Diffusion in Dilute Alloys, J. Nucl. Mater., 1978, 69-70(1-2), p 70-96

    Article  ADS  Google Scholar 

  7. 7.

    V. Barbe and M. Nastar, Phenomenological Coefficients in a Concentrated Alloy for the Dumbbell Mechanism, Philos. Mag., 2006, 86(23), p 3503-3535

    Article  ADS  Google Scholar 

  8. 8.

    V. Barbe and M. Nastar, Phenomenological Coefficients in a Dilute BCC Alloy for the Dumbbell Mechanism, Philos. Mag., 2007, 87(11), p 1649-1669

    Article  ADS  Google Scholar 

  9. 9.

    A. Van der Ven and G. Ceder, First Principles Calculation of the Interdiffusion Coefficient in Binary Alloys, Phys. Rev. Lett., 2005, 94, p 045901.

    Article  ADS  Google Scholar 

  10. 10.

    A. Van der Ven and G. Ceder, Vacancies in Ordered and Disordered Binary Alloys Treated with the Cluster Expansion, Phys. Rev. B: Condens. Matter. Mater. Phys., 2005, 71, p 054102-1-054102-2.

    ADS  Google Scholar 

  11. 11.

    A.R. Allnatt and E.L. Allnatt, Computer Simulation Study of the Manning Relations and Related Approximations in a Strictly Regular Solution Model, Phil. Mag. A, 1991, 64(2), p 341-353

    Article  ADS  Google Scholar 

  12. 12.

    A.R. Allnatt and E.L. Allnatt, Comparison of Computer Simulated and Theoretical Tracer Diffusion Coefficients for a Strictly Regular Solution Model of a Concentrated Alloy, Phil. Mag. A, 1992, 66(1), p 165-171

    Article  ADS  Google Scholar 

  13. 13.

    A. Van der Ven, G. Ceder, M. Asta, and P.D. Tepesch, First-Principles Theory of Ionic Diffusion with Nondilute Carriers, Phys. Rev. B: Condens. Matter. Mater. Phys., 2001, 64(18), 184307-1-184307-17.

    ADS  Google Scholar 

  14. 14.

    G.K. Boreskov, Heterogeneous Catalysis, Nova Science Publishers Inc., New York, 2003

    Google Scholar 

  15. 15.

    J.M. Yeomans, Statistical Mechanics of Phase Transitions. Clarendon Press/Oxford University Press, Oxford, New York, 1992.

    Google Scholar 

  16. 16.

    J.M. Sanchez and D.d. Fontaine, The FCC Ising Model in the Cluster Variation Approximation, Phys. Rev. B, 1978, 17(7), p 2926-2936

    Article  MathSciNet  ADS  Google Scholar 

  17. 17.

    A. Van der Ven, H.C. Yu, G. Ceder, and K. Thornton, Vacancy Mediated Substitutional Diffusion in Binary Crystalline Solids, Progr. Mater. Sci., 2010, 55(2), p 61-105.

    Article  Google Scholar 

  18. 18.

    A.R. Allnatt, Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids, J. Phys. C: Solid State, 1982, 15, p 5605-5613

    Article  ADS  Google Scholar 

  19. 19.

    Y. Kakuda, E. Uchida, and N. Imai, A New Model of the Excess Gibbs Energy of Mixing for a Regular Solution, Proc. Jpn. Acad. Ser. B, 1994, 70(10), p 163-168

    Article  Google Scholar 

  20. 20.

    A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solids, Cambridge University Press, Cambridge, 1993

    Google Scholar 

  21. 21.

    L.S. Darken, Diffusion, Mobility and their Interrelation Through Free Energy in Binary Metallic Systems, Trans. AIME, 1948, 175, p 184-201.

    Google Scholar 

  22. 22.

    G.E. Murch, Chemical Diffusion in Highly Defective Solids, Phil. Mag. A, 1980, 41(2), p 157-163

    Article  ADS  Google Scholar 

  23. 23.

    R. Kutner, Chemical Diffusion in the Lattice Gas of Non-Interacting Particles, Phys. Lett. A, 1981, 81(4), p 239-240

    Article  ADS  Google Scholar 

  24. 24.

    L.K. Moleko, A.R. Allnatt, and E.L. Allnatt, A Self-Consistent Theory of Matter Transport in a Random Lattice Gas and Some Simulation Results, Phil. Mag. A, 1989, 59(1), p 141-160

    Article  ADS  Google Scholar 

  25. 25.

    I.V. Belova and G.E. Murch, Collective Diffusion in the Binary Random Alloy, Phil. Mag. A, 2000, 80(3), p 599-607

    Article  ADS  Google Scholar 

Download references


We gratefully acknowledge financial support from the DOE Nuclear Engineering Research Initiative Program (NERI), award number DE-FC07-06ID14747.

Author information



Corresponding author

Correspondence to D. Morgan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swoboda, B., Van der Ven, A. & Morgan, D. Assessing Concentration Dependence of FCC Metal Alloy Diffusion Coefficients Using Kinetic Monte Carlo. J. Phase Equilib. Diffus. 31, 250–259 (2010).

Download citation


  • diffusion constant
  • diffusion modeling
  • metallic alloys
  • Monte Carlo simulations
  • thermodynamic modeling