Skip to main content
Log in

Thermodynamic Assessment of the La-Fe-O System

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

The La-Fe and the La-Fe-O systems are assessed using the Calphad approach, and the Gibbs energy functions of ternary oxides are presented. Oxygen and mutual La and Fe solubilities in body-centered cubic (bcc) and face-centered cubic (fcc) structured metallic phases are considered in the modeling. Oxygen nonstoichiometry of perovskite-structured Lax Fey O3−δ is modeled using the compound energy formalism (CEF), and the model is submitted to a defect chemistry analysis. The contribution to the Gibbs energy of LaFeO3 due to a magnetic order-disorder transition is included in the model description. Lanthanum-doped hexaferrite, LaFe12O19, is modeled as a stoichiometric phase. Δf,elements°H 298 K (LaFe12O19) = −5745 kJ/mol, °S 298 K (LaFe12O19) = 683 J/mol · K, and Δf,oxides°G (LaFe12O19) = 4634 − 37.071T (J/mol) from 1073 to 1723 K are calculated. The liquid phase is modeled using the two-sublattice model for ionic liquids. The calculated La-Fe phase diagram, LaO1.5-FeO x phase diagrams at different oxygen partial pressures, and phase equilibria of the La-Fe-O system at 873, 1073, and 1273 K as a function of oxygen partial pressures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.V. Goncharuk, V.R. Sidorko, Thermodynamics of Interaction of Rare-Earth Metals with d-Metals. The Scandium—Iron System, Powder Metall. Met. Ceram., 2001, 40(7-8), p 354-361.

    Article  Google Scholar 

  2. E.M. Savitskii, Investigation of the Physico-Chemical Interactions of Rare-Earth Metals with Iron and Steel, Proc. Conf. Rare Earth Elements for Steel and Alloys, 1959, p 31-49.

  3. J. Linden, “Austenitic Stainless Steel with High Oxidation Resistance,” Patent DE69813156T2 06.11.2003, EP-number: 0921206. www.patent-de.com/20031106/DE69813156T2.html.

  4. M. Küpferling, V.C. Flores, R. Grössinger, and M. Aquino, Preparation and Characterization of LaFe12O19 Hexaferrite, J. Magn. Magn. Mater., 2005, 290-291, p 1255-1258.

    Article  ADS  Google Scholar 

  5. A.M. Van Diepen, F.K. Lotgering, Mössbauer Effect in LaFe12O19, J. Phys. Chem. Solids, 1974, 35, p 1641-1643.

    Article  ADS  Google Scholar 

  6. E. Pollert, Crystal Chemistry of Magnetic Oxides Part 2: Hexagonal Ferrites, Prog. Cryst. Growth Charact., 1985, 11, p 155-205.

    Article  Google Scholar 

  7. K.A. Gschneidner Jr., Rare Earth Alloys, A Critical Review of the Alloy Systems of the Rare Earth, Scandium and Yttrium Metals, D. Van Nostrand Company, Princeton, NJ, 1961, p 187-188.

    Google Scholar 

  8. F.H. Spedding and A.H. Daane, Ed., The Rare Earths, John Wiley & Sons, New York, 1961, p 280, 415-416

  9. J. Richerd, Lanthanum and Cerium in Pure Iron, Mem. Sci. Rev. Metall., 1962, 59(7-8), p 539-548 (in French).

    Google Scholar 

  10. M. Kepka, J. Skala, Effect of Rare-Earth Elements on Properties of Steels, Hutník, 1972, 22(1), p 12-17 (in Czech).

    Google Scholar 

  11. K. Nassau, L.V. Cherry, W.E. Wallace, Intermetallic Compounds between Lanthanons and Transition Metals of the First Long Period. I-Preparation, Existence and Structural Studies, J. Phys. Chem. Solids, 1960, 16, p 123-130.

    Article  ADS  Google Scholar 

  12. J.F. Cannon, D.L. Robertson, H.T. Hall, Synthesis of Lanthanide-Iron Laves Phases at High Pressures and Temperatures, Mater. Res. Bull., 1972, 7, p 5-12.

    Article  Google Scholar 

  13. E.M. Savitskii, Rare Metals and Alloys, Dom Tekhniki, Moscow, 1959, in Russian. Cited by Ref 11

  14. E.M. Savitskii, Rare-Earth Metals, Metalloved. Term. Obrab. Met., 1961, 9, p 28 (in Russian).

    Google Scholar 

  15. W. Zhang, C. Li, The Fe-La (Iron-Lanthanum) System, J. Phase Equilib., 1997, 18(3), p 301-304.

    Article  Google Scholar 

  16. V.V. Berezutskii, N.I. Usenko, and M.I. Ivanov (2006) Thermochemistry of Binary Alloys of Lanthanum with 3d-Transition Metals, Powder Metall Met Ceram., 45(5-6): 266-271.

    Article  Google Scholar 

  17. Y.O. Esin, A.F. Ermakov, M.G. Valishev, G.M. Ryss, P.V. Geld, and E.S. Levin, Enthalpy of Formation of Liquid Binary Alloys of Iron with Lanthanum and Cerium, Zh. Fiz. Khim., 1981, 55(7), p 1665-1669, in Russian.

    Google Scholar 

  18. H. Okamoto, Thermodynamically Improbable Phase Diagrams, J. Phase Equilib., 1991, 12(2), p 148-168.

    Article  Google Scholar 

  19. H. Okamoto, Phase Diagrams of Binary Iron Alloys, ASM International, Materials Park, OH, 1993, p 341-349.

    Google Scholar 

  20. V.L. Moruzzi and M.W. Shafer, Phase Equilibria in the System La2O3-Iron Oxide in Air, J. Am. Ceram. Soc., 1960, 43(7), p 367-372.

    Article  Google Scholar 

  21. J. Cassedanne, H. Forestier (1960) Investigation of the Systems Fe2O3-La2O3 and Fe2O3-Sc2O3, C.R. Acad. Sci. (Paris), 250: 2898-2900 (in French).

    Google Scholar 

  22. M. Kowalski, P.J. Spencer, Thermodynamic Reevaluation of the Cr-O, Fe-O and Ni-O Systems: Remodelling of the Liquid, BCC and FCC Phases, Calphad, 1995, 19(3), p 229-243.

    Article  Google Scholar 

  23. A.N. Grundy, B. Hallstedt, L.J. Gauckler, Thermodynamic Assessment of the Lanthanum-Oxygen System, J. Phase Equilib., 2001, 22(2), p 105-113.

    Article  Google Scholar 

  24. T. Nakamura, G. Petzow, L.J. Gauckler, Stability of the Perovskite Phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in Reducing Atmosphere I. Experimental Results, Mater. Res. Bull., 1979, 14, p 649-659.

    Article  Google Scholar 

  25. S. Stølen, F. Grønvold, H. Brinks, T. Atake, and H. Mori, Heat Capacity and Thermodynamic Properties of LaFeO3 and LaCoO3 from T = 13 K to T = 1000 K, J. Chem. Thermodyn., 1998, 30, p 365-377.

    Article  Google Scholar 

  26. J. Cheng and A. Navrotsky, Enthalpies of Formation of LaMO3 Perovskites (M = Cr, Fe, Co, and Ni), J. Mater. Res., 2005, 20(1), p 191-200.

    Article  ADS  Google Scholar 

  27. S. Tanasescu, N.D. Totir, D.I. Marchidan, Thermodynamic Properties of LaFeO3 Studied by Means of Galvanic Cells with Solid Oxide Electrolyte, Mater. Res. Bull., 1997, 32(7), p 925-931.

    Article  Google Scholar 

  28. O.M. Sreedharan, M.S. Chandrasekharaiah, Standard Gibbs’ Energy of Formation of LaFeO3 and Comparison of Stability of LaMO3 (M = Mn, Fe, Co or Ni) Compounds, J. Mater. Sci., 1986, 21, p 2581-2584.

    Article  ADS  Google Scholar 

  29. Y.D. Tretyakov, A.R. Kaul, V.K. Portnoy, Formation of Rare Earth and Yttrium Orthoferrites: A Thermodynamic Study, High Temp. Sci., 1977, 9, p 61-70.

    Google Scholar 

  30. S.C. Parida, Z. Singh, S. Dash, R. Prasad, V. Venugopal, Thermodynamic Studies on LaFeO3(s), J. Alloys Compd., 1998, 280, p 94-98.

    Article  Google Scholar 

  31. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, Thermodynamic Properties of Fe-Lanthanoid-O Compounds at High Temperatures, J. Solid State Chem., 1978, 23, p 43-57.

    Article  ADS  Google Scholar 

  32. T. Sugihara, Thesis of D.Sc., Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan, 1979, p 152, in Japanese

  33. N. Kimizuka, T. Katsura, The Standard Free Energy of the Formation of LaFeO3 at 1204°C, Bull. Chem. Soc. Jpn., 1974, 47(7), p 1801-1802.

    Article  Google Scholar 

  34. S.A. Leontev, Y.P. Vorobev, A.M. Balbechor, A.N. Men, A.Y. Cherronenkis, G.I. Chufaov, Thermodynamic Properties of Orthoferrites of Rare-Earth Elements and Yttrium, Dokl. Akad. Nauk USSR, 1973, 209, p 618-620 (in Russian).

    Google Scholar 

  35. J. Mizusaki, T. Sasamoto, W.R. Cannon, H.K. Bowen, Electronic Conductivity, Seebeck Coefficient, and Defect Structure of LaFeO3, J. Am. Ceram. Soc., 1982, 65(8), p 363-368.

    Article  Google Scholar 

  36. A. Fossdal, M. Menon, I. Waernhus, K. Wiik, M.-A. Einarsrud, and T. Grande, Crystal Structure and Thermal Expansion of La1−x Sr x FeO3−δ Materials, J. Am. Ceram. Soc., 2004, 87(10), p 1952-1958.

    Article  Google Scholar 

  37. S. Geller, P.M. Raccah, Phase Transitions in Perovskitelike Compounds of the Rare Earths, Phys. Rev. B, 1970, 2(4), p 1167-1172.

    Article  ADS  Google Scholar 

  38. J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki, Nonstoichiometry and Defect Structure of the Perovskite-Type Oxides La1−x Sr x FeO3−δ, J. Solid State Chem., 1985, 58, p 257-266.

    Article  ADS  Google Scholar 

  39. I. Waernhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik, Electronic Properties of Polycrystalline LaFeO3. Part I: Experimental Results and the Qualitative Role of Schottky Defects, Solid State Ionics, 2005, 176, p 2783-2790.

    Article  Google Scholar 

  40. I. Waernhus, T. Grande, K. Wiik, Electronic Properties of Polycrystalline LaFeO3. Part II: Defect Modelling Including Schottky Defects, Solid State Ionics, 2005, 176(35-36), p 2609-2616.

    Article  Google Scholar 

  41. M. Zinkevich, S. Geupel, F. Aldinger, A. Durygin, S.K. Saxena, M. Yang, Z.-K. Liu, Phase Diagram and Thermodynamics of the La2O3-Ga2O3 System Revisited, J. Phys. Chem. Solids, 2006, 67, p 1901-1907.

    Article  ADS  Google Scholar 

  42. M. Selleby, B. Sundman, A Reassessment of the Ca-Fe-O System, Calphad, 1996, 20(3), p 381-392.

    Article  Google Scholar 

  43. J.R. Taylor, A.T. Dinsdale, A Thermodynamic Assessment of the Cr-Fe-O System, Z. Metallkd., 1993, 84, p 335-345.

    Google Scholar 

  44. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425.

    Article  Google Scholar 

  45. B. Hallstedt, N. Dupin, M. Hillert, L. Höglund, H.L. Lukas, J.C. Schuster, N. Solak, Thermodynamic Models for Crystalline Phases. Composition Dependent Models for Volume, Bulk Modulus and Thermal Expansion, Calphad, 2007, 31(1), p 28-37.

    Article  Google Scholar 

  46. B. Sundman, B. Jansson, J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190.

    Article  Google Scholar 

  47. M.T. Hepworth, R.P. Smith, E.T. Turkdogan, Permeability Solubility and Diffusivity of Oxygen in Bcc Iron, Trans. AIME, 1966, 236, p 1278.

    Google Scholar 

  48. J.H. Swisher, E.T. Turkdogan, Solubility Permeability and Diffusivity of Oxygen in Solid Iron, Trans. AIME, 1967, 239, p 426-431.

    Google Scholar 

  49. M. Chen, B. Hallstedt, L.J. Gauckler, Thermodynamic Assessment of the Co-O System, J. Phase Equilib., 2003, 24(3), p 212-227.

    Article  Google Scholar 

  50. N. Saunders and A.P. Miodownik, Calphad Calculation of Phase Diagrams, Pergamon Materials Series, Vol 1. Elsevier Science Ltd., Oxford, UK, 1998, p 94-96

  51. B.C. Tofield, W.R. Scott, Oxidative Nonstoichiometry in Perovskite, an Experimental Survey; the Defect Structure of an Oxidized Lanthanum Manganite by Powder Neutron Diffraction, J. Solid State Chem., 1974, 10, p 183-194.

    Article  ADS  Google Scholar 

  52. P. Porta, S. Cimino, S. De Rossi, M. Faticanti, G. Minelli, I. Pettiti, AFeO3 (A = La, Nd, Sm) and LaFe1−x Mg x O3 Perovskites: Structural and Redox Properties, Mater. Chem. Phys., 2001, 71, p 165-173.

    Article  Google Scholar 

  53. P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, and G. Russo, AFeO3 (A = La, Nd, Sm) and LaFe1−x Mg x O3 Perovskites as Methane Combustion and CO Oxidation Catalysts: Structural, Redox and Catalytic Properties, Appl. Catal. B-Environ., 2001, 29, p 239-250.

    Article  Google Scholar 

  54. J.-O. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman, A Compound-Energy Model of Ordering in a Phase with Sites of Different Coordination Numbers, Acta Metall., 1986, 34, p 437-445.

    Article  Google Scholar 

  55. M. Hillert, B. Jansson, B. Sundman, Application of the Compound-Energy Model to Oxide Systems, Z. Metallkd., 1988, 79(2), p 81-87.

    Google Scholar 

  56. M. Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320, p 161-176.

    Article  Google Scholar 

  57. A.N. Grundy, M. Chen, B. Hallstedt, L.J. Gauckler, Assessment of the La-Mn-O System, J. Phase Equilib. Diff., 2005, 26(2), p 131-151.

    Google Scholar 

  58. G. Inden, Determination of Chemical and Magnetic Interchange Energies in BCC Alloys. I. General Treatment, Z. Metallkd., 1975, 66(10), p 577-582.

    Google Scholar 

  59. M. Hillert, M. Jarl, A Model of Alloying Effects in Ferromagnetic Metals, Calphad, 1978, 2(3), p 227-238.

    Article  Google Scholar 

  60. A.N. Grundy, E. Povoden, T. Ivas, L.J. Gauckler, Calculation of Defect Chemistry Using the CALPHAD Approach, Calphad, 2005, 30, p 33-41.

    Google Scholar 

  61. A. Deschamps, F. Bertaut, On the Substitution of Al, Ga, and Cr with Fe in Baryum Hexaferrite BaO.6Fe2O3, C.R. Acad. Sci. (Paris), 1957, 244, p 3069-3072 (in French).

    Google Scholar 

  62. M. Hillert, B. Jansson, B. Sundman, J. Ågren, A Two-Sublattice Model of Molten Solutions with Different Tendency of Ionization, Metall. Trans. A, 1985, 16A, p 261-266.

    ADS  Google Scholar 

  63. B. Sundman, Modification of the Two-Sublattice Model for Liquids, Calphad, 1991, 15, p 109-119.

    Article  Google Scholar 

  64. R. Ferro, G. Borzone, G. Cacciamani, and N. Parodi, Thermodynamics of Rare Earth Alloys: Systematics and Experimental, Themochim. Acta, 1998, 314(1-2), p 183-204.

    Article  Google Scholar 

  65. E. Povoden, A.N. Grundy, M. Chen, T. Ivas and L.J. Gauckler, Thermodynamic Assessment of the La-Sr-Fe-O System, in preparation.

Download references

Acknowledgment

This work was financially supported by the Federal Agency for Education and Science, Sixth Framework Program for Research and Technical Development of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Povoden-Karadeniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povoden-Karadeniz, E., Grundy, A.N., Chen, M. et al. Thermodynamic Assessment of the La-Fe-O System. J. Phase Equilib. Diffus. 30, 351–366 (2009). https://doi.org/10.1007/s11669-009-9501-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9501-6

Keywords

Navigation