Journal of Phase Equilibria and Diffusion

, Volume 29, Issue 2, pp 136–140 | Cite as

Phase Diagram for the System RuO2-TiO2 in Air

Basic and Applied Research

Abstract

There are conflicting reports in the literature regarding solid solubility in the system RuO2-TiO2. To resolve this issue a few experiments were conducted in air at 1673, 1723, and 1773 K. The results show limited terminal solid solubility. There is an extended solid-state miscibility gap that intersects the decomposition curve for the RuO2-rich solid solution generating a peritectoid reaction at 1698 K. The measured equilibrium compositions of the solid solutions are used to develop a thermodynamic description of the oxide solid solution with rutile structure. Using the subregular solution model, the enthalpy of mixing can be represented by the expression, \( \Delta H^{\rm M} /{\text{J}} \cdot {\text{mol}}^{{ - 1}} = X_{{{\text{TiO}}_{2} }} X_{{{\text{RuO}}_{2} }} {\left( {34,100X_{{{\text{TiO}}_{2} }} + 30,750X_{{{\text{RuO}}_{2} }} } \right)} \). The binodal and spinodal curves and T-X phase diagram in air are computed using this datum and Gibbs energy of formation of RuO2 available in the literature. The computed results suggest that equilibrium was not attained during solubility measurements at lower temperatures reported in the literature.

Keywords

phase diagram thermodynamic computations thermodynamic properties solid solution miscibility gap peritectoid reaction 

References

  1. 1.
    J. Qu, X. Zhang, Y. Wang, C. Xie, Electrochemical Reduction of CO2 on RuO2-TiO2 Nanotube Composite Modified Pt Electrode, Electrochim. Acta, 2005, 50(16-17), p 3576-3580CrossRefGoogle Scholar
  2. 2.
    C. Comninellis, G.P. Vercesi, Characterization of DSA-Type Oxygen Evolving Electrodes: Choice of a Coating, J. Appl. Electrochem., 1991, 21, p 335-345CrossRefGoogle Scholar
  3. 3.
    K.T. Jacob, S. Mishra, Y. Waseda, Refinement of Thermodynamic Properties of Ruthenium Dioxide and Osmium Dioxide, J. Am. Ceram. Soc., 2000, 83(7), p1745-1752CrossRefGoogle Scholar
  4. 4.
    R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Inter-atomic Distances in Halides and Chalcogenides, Acta Crystallogr., 1976, A32, p 751ADSGoogle Scholar
  5. 5.
    M. Hrovat, J. Holc, D. Kolar, Phase Equilibria in the RuO2-TiO2-Al2O3 and RuO2-TiO2-Bi2O3 Systems, J. Mater. Sci. Lett., 1993, 12, p 1858-1860CrossRefGoogle Scholar
  6. 6.
    M. Hrovat, J. Holc, Z. Samardzija, G. Drazic, The Extent of Solid Solubility in the RuO2-TiO2 System, J. Mater. Res., 1996, 11(3), p 727-732CrossRefADSGoogle Scholar
  7. 7.
    H.K. Hardy, A Sub-Regular Solution Model and Its Application to Some Binary Alloy Systems, Acta Metall., 1953, 1, p 202-209CrossRefGoogle Scholar
  8. 8.
    M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud, JANAF Thermochemical Tables, 3rd ed, J. Phys. Chem. Ref. Data, 1985, 14 (suppl. 1), p 1681Google Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations