Skip to main content
Log in

Modeling of Microstructure and Microsegregation in Solidification of Multi-Component Alloys

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Driven by industrial demand, extensive efforts have been made to investigate microstructure evolution and microsegregation development during solidification of multicomponent alloys. This paper briefly reviews the recent progress in modeling of microstructures and microsegregation in solidification of multicomponent alloys using various models including micromodel, phase field, front tracking, and cellular automaton approaches. A two-dimensional modified cellular automaton (MCA) model coupled with phase diagram software PanEngine is presented for the prediction of microstructures and microsegregation in the solidification of ternary alloys. The model adopts MCA technique to simulate dendritic growth. The thermodynamic data needed for determining the dynamics of dendritic growth are calculated with PanEngine. After validating the model by comparing the simulated values with the prediction of the Scheil model for solute profiles in the primary dendrites as a function of solid fraction, the model was applied to simulate the microstructure and microsegregation in the solidification of Al-rich ternary alloys. The simulation results demonstrate the capabilities of the present model not only to simulate realistic dendrite morphologies, but also to predict quantitatively the microsegregation profiles in the solidification of multi-component alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hecht U., Granasy L., Pusztai T., Bottger B., Apel M., Witusiewicz V., Ratke L., De Wilde J., Froyen L., Camel D., Drevet B., Faivre G., Fries S.G., Legendre B., Rex S. (2004) Multiphase Solidification in Multicomponent Alloys. Mater. Sci. Eng. R46:1-49, (in English)

    Google Scholar 

  2. Xie F.-Y., Kraft T., Zuo Y., Moon C.-H., Chang Y.A. (1999) Microstructure and Microsegregation in Al-rich Al-Cu-Mg Alloys. Acta Mater. 47:489-500, (in English)

    Article  Google Scholar 

  3. Yan X., Chen S., Xie F., Chang Y.A. (2002) Computational and Experimental Investigation of Microsegregation in an Al-rich Al-Cu-Mg-Si Quaternary Alloy. Acta Mater. 50:2199-2207, (in English)

    Article  Google Scholar 

  4. Xie F., Yan X., Ding L., Zhang F., Chen S., Chu M.G., Chang Y.A. (2003) A Study of Microstructure and Microsegregation of Aluminum 7050 Alloy. Mater. Sci. Eng. A 355:144-153, (in English)

    Article  Google Scholar 

  5. Ohsasa K., Nakaue S., Kudoh M., Narita T. (1995) Analysis of Solidification Path of Fe-Cr-Ni Ternary Alloy. ISIJ Int. 35(6):629-636, (in English)

    Google Scholar 

  6. Ode M., Lee J.S., Kim S.G., Kim W.T., Suzuki T. (2000) Phase-field Model for Solidification of Ternary Alloys. ISIJ Int. 40(9):870-876, (in English)

    Google Scholar 

  7. Kobayashi H., Ode M., Kim S.G., Kim W.T., Suzuki T. (2003) Phase-field Model for Solidification of Ternary Alloys Coupled with Thermodynamic Database. Scripta Mater. 48:689-694, (in English)

    Article  Google Scholar 

  8. Grafe U., Bottger B., Tiaden J., Fries S.G. (2000) Coupling of Multicomponent Thermodynamic Databases to a Phase Field Model: Application to Solidification and Solid State Transformations of Superalloys. Scripta mater. 42:1179-1186, (in English)

    Article  Google Scholar 

  9. Cha P.-R., Yeon D.-H., Yoon J.-K. (2001) A Phase Field Model for Isothermal Solidification of Multicomponent Alloys. Acta mater. 49:3295-3307, (in English)

    Article  Google Scholar 

  10. Chen Q., Ma N., Wu K., Wang Y. (2004) Quantitative Phase Field Modeling of Diffusion-controlled Precipitate Growth and Dissolution in Ti-Al-V. Scripta Mater. 50:471-476, (in English)

    Article  Google Scholar 

  11. B. Böttger and I. Steinbach, Online-Coupling of Thermodynamic Databases to a Multi-Phase-Field Model – Application to Hypereutectic Aluminum Casting Alloys, TMS Annual Meeting, February 13-17, 2005 (San Francisco, CA)

  12. Jacot A., Rappaz M. (2002) A Pseudo-front Tracking Technique for the Modeling of Solidification Microstructures in Multi-component Alloys. Acta Mater. 50:1909-1926, (in English)

    Article  Google Scholar 

  13. Jarvis D.J., Brown S.G.R., Spittle J.A. (2000) Modeling of Non-equilibrium Solidification in Ternary Alloys: Comparison of 1D, 2D, and 3D Cellular Automaton-finite Difference Simulations. Mater. Sci. Tech. 16:1420-1424, (in English)

    Google Scholar 

  14. Lee P.D., Chirazi A., Atwood R.C., Wang W. (2004) Multiscale Modelling of Solidification Microstructures, Including Microsegregation and Microporosity, in an Al-Si-Cu Alloy. Mater. Sci. Eng. A 365:57-65, (in English)

    Article  Google Scholar 

  15. Miettinen J. (2000) Thermodynamic-kinetic Simulation of Constrained Dendrite Growth in Steels. Metall. Mater. Trans. B 31B:365-379, (in English)

    Article  Google Scholar 

  16. Bottger B., Grafe U., Ma D., Fries S.G. (2000) Simulation of Microsegregation and Microstructural Evolution in Directionally Solidified Superalloys. Mater Sci Tech 16:1425-1428, (in English)

    Article  Google Scholar 

  17. Yang B.J., Stefanescu D.M., Leon-Torres J. (2001) Modeling of Microstructural Evolution with Tracking of Equiaxed Grain Movement for Multicomponent Al-Si Alloy. Metall. Mater. Trans. A 32A:3065-3076, (in English)

    Article  Google Scholar 

  18. Chen S.-L., Daniel S., Zhang F., Chang Y.A., Yan X.-Y., Xie F.-Y., Schmid-Fetzer R., Oates W.A. (2002) The PANDAT Software Package and its Applications. CALPHAD 26(2):175-188, (in English)

    Article  Google Scholar 

  19. J.A. Warren, I. Loginova, L. Granasy, T. Borzsonyi, and T. Pusztai, Phase Field Modeling of Alloy Polycrystals, Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, J. Warren, M. Jolly, and M. Krane, Ed., TMS Publication, Florida, May 25-30, 2003, p 45-52

  20. Nastac L. (1999) Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater. 47:4253-4262, (in English)

    Article  Google Scholar 

  21. Zhu M.F., Hong C.P. (2001) A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys. ISIJ Int. 41:436-445, (in English)

    Google Scholar 

  22. Wang W., Lee P.D., Mclean M. (2003) A Model of Solidification Microstructures in Nickel-based Superalloys: Predicting Primary Dendrite Spacing Selection. Acta Mater. 51:2971-2987, (in English)

    Google Scholar 

  23. Belteran-Sanchez L., Stefanescu D.M. (2004) A Quantitative Dendrite Growth Model and Analysis of Stability Concepts. Metall. Mater. Trans. A 35:2471-2485, (in English)

    Article  Google Scholar 

  24. M.F. Zhu, C.P. Hong, D.M. Stefanescu, and Y.A. Chang, Advances in Computational Modeling of Microstructure Evolution in Solidification of Aluminum Alloys, Proceedings of Simulation of Aluminum Shape Casting Processing, Q.G. Wang, M.J.M. Krane, and P.D. Lee, Ed., March 12-16, 2006 (San Antonio, TX) TMS 2006 Annual Meeting, TMS Publication, 2006, p 13-22, in English

  25. Wheeler A.A., Boettinger W.J., McFadden G.B. (1992) Phase-field Model for Isothermal Phase Transitions in Binary Alloys. Phys. Rev. A 45:7424-7439, (in English)

    Article  ADS  Google Scholar 

  26. Granasy L., Pusztai T., Warren J.A., Douglas J.F., Borzsonyi T., Ferreiro V. (2003) Growth of ‘Dizzy Dendrites’ in a Random Field of Foreign Particles. Nature Mater. 2:92-96, in English

    Article  ADS  Google Scholar 

  27. M.F. Zhu, S.Y. Lee, C.P. Hong, Modified Cellular Automaton Model for the Prediction of Dendritic Growth with Melt Convection, Phys. Rev. E, 2004, 69, article No. 061610, in English

    Google Scholar 

  28. M.-F. Zhu, W.-S. Cao, S.-L. Chen, F.-Y. Xie, C.-P. Hong, Y.A. Chang, Modified Cellular Automaton Model for Modeling of Microstructure and Microsegregation in Solidification of Ternary Alloys, Trans. Nonferrous Met. Soc. China, 2006, 16 (Special issue 2), p s180-s185, (in English)

    Google Scholar 

Download references

Acknowledgments

The research of M.F.Z. was supported by the National Natural Science Foundation of China under Grant Nos. 50371015 and 50671025. Y. Austin Chang wishes to thank NSF through the FRG Grant No. DMR-0309468 and Wisconsin Distinguished Professorship for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-F. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, MF., Cao, W., Chen, SL. et al. Modeling of Microstructure and Microsegregation in Solidification of Multi-Component Alloys. J Phs Eqil and Diff 28, 130–138 (2007). https://doi.org/10.1007/s11669-006-9011-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-006-9011-8

Keywords

Navigation