Skip to main content
Log in

Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Simulation technologies are applied extensively in casting industries to understand the heat transfer and fluid transport phenomena and their relationships to the microstructure and the formation of defects. It is critical to have accurate thermo-physical properties as input for reliable simulations of the complex solidification and solid phase transformation processes. The thermo-physical properties can be calculated with the help of thermodynamic calculations of phase stability at given temperatures and compositions. A multicomponent alloy solidification model, coupled with a Gibbs free energy minimization engine and thermodynamic databases, has been developed. A back diffusion model is integrated so that the solidification conditions, such as cooling rate, can be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lukas H.L.,Weiss J., Henig E.Th. (1982) Strategies for the Calculation of Phase Diagrams. CALPHAD 6(3):229-251

    Article  Google Scholar 

  2. U.R. Kattner, The Thermodynamic Modeling of Multicomponent Phase Equilibria, JOM, 1997, 49, p 14-19

  3. Saunders N., Miodownik A.P.(1998) CALPHAD: Calculation of Phase Diagrams A Comprehensive Guide. Elsevier Science Ltd, New York, NY, p 299–411

    Google Scholar 

  4. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J-Ph. Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM, 2003, Dec., p 65

  5. J. Guo and M.T. Samonds, Property Prediction With Coupled Macro-Micromodeling and Computational Thermodynamics, Hwang Weng-Sing and Kaohsiung, Ed., Modeling of Casting & Solidification Processes, Taiwan, 2004, p 157-164

  6. Brody H.D., Flemings M.C. (1966) Solute Redistribution during Dendrite Solidification. Trans. Met. Soc. AIME p 236:615

    Google Scholar 

  7. Clyne T.W., Kurz W. (1981) Solute Redistribution during Solidification with Rapid Solid State Diffusion. Metall. Trans. 12A:965

    Google Scholar 

  8. Ohnaka I. (1986) Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase. Trans. ISIJ 26:1045

    Google Scholar 

  9. Wang C.Y., Beckermann C. (1993) Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification. Mater. Sci. Eng. 171:199

    Article  Google Scholar 

  10. Nastac L., Stefanescu D.M. (1993) An Analytical Model for Solute Redistribution during Solidification of Plannar, Columnar and Equiaxed Morphology. Metall. Trans. 24A:2107

    Google Scholar 

  11. Voller V.R., Beckermann C. (1999) A Unified Model of Microsegregation and Coarsening. Metall. Trans. 30:2183

    Article  Google Scholar 

  12. Voller V. R. (2001) On a General Back-diffusion Parameter. J. Cryst. Growth 226:562–568

    Article  Google Scholar 

  13. Schneider M.C., Gu J.P., Beckermann C., Boettinger W.J., Kattner U.R. (1997) Modeling of Micro- and Macrosegregation and Freckle Formation in Single-Crystal Nickel-Base Superalloy Directional Solidification. Met. Mat. Trans. A 28A:1517–1531

    Article  Google Scholar 

  14. X. Yan, Thermodynamic and Solidification Modeling Coupled with Experimental Investigation of the Multicompoent Aluminum Alloys, Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 2001

  15. Wang C.Y., Beckermann C. (1993) A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification. Met. Trans. A, 24A:2787–2802

    Google Scholar 

  16. Ohnaka I. (1986) Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase. Trans. ISIJ, 26:1045–1052

    Google Scholar 

  17. X.L. Yang, P.D. Lee, R.F. Brooks, and R. Wunderlich, The Sensitivity of Investment Casting Simulations to the Accuracy of Thermophysical Property Values, TMS Ed., Superalloys, The Minerals, Metals & Materials Society, 2004

  18. Alkan B., Karabulut R., Unal B. (2002) Electrical Resistivity of Liquid Metals and Alloys. Acta Phys. Pol. A, 102:385–400

    ADS  Google Scholar 

  19. Rossiter P.L., (1987). The Electrical Resistivity of Metals and Alloys. Cambridge University Press, New York, NY, pp. 137–272

    Google Scholar 

  20. Rudajevova A., Stanek M., Lukac P. (2003) Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al Alloys, Mat. Sci. Eng., A A341:152–157

    Article  Google Scholar 

  21. Klemens P.G., Williams R.K. (1986) Thermal Conductivity of Metals and Alloys. Int. Mat. Rev. 31(5):197–215

    Google Scholar 

  22. Sichen D., Bygden J., Seetharaman S. (1994) A Model for Estimation of Viscosities of Complex Metallic and Ionic Melts. Met. Mat. Trans. B 25B(August):519–525

    Google Scholar 

  23. N. Saunders, X. Li, A.P. Miodownik, and J.P. Schille, Modeling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys, Light Metals, 2003, p 999–1004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Samonds, M.T. Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration. J Phs Eqil and Diff 28, 58–63 (2007). https://doi.org/10.1007/s11669-006-9005-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-006-9005-6

Keywords

Navigation