Skip to main content
Log in

Thermodynamic optimization of the Na2O-B2O3 pseudo-binary system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The Na2O-B2O3 system is thermodynamically optimized by means of the CALPHAD method. A two-sublattice ionic solution model, (Na+1)P(O−2,BO3 −3,B4O7 −2,B3O4.5)Q, has been used to describe the liquid phase. All the solid phases were treated as stoichiometric compounds. A set of thermodynamic parameters, which can reproduce most experimental data of both phase diagram and thermodynamic properties, was obtained. Comparisons between the calculated results and experimental data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Kim, J.K. Kang, S.J. Park, S.J. Chung: “Growth of the Non-Linear Optical Crystals of Lithium Triborate and Beta Barium Borate,” Opt. Mater., 1998, 9(1–4), pp. 356–60.

    Article  ADS  Google Scholar 

  2. L. Kaufman and K. Bernstei: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.

    Google Scholar 

  3. H. Yu, Q. Chen, and Z.P. Jin: “Thermodynamic Assessment of the CaO-B2O3 System,” Calphad, 1999, 23(1), pp. 101–12.

    Article  Google Scholar 

  4. H. Yu, Q. Chen, and Zh. Jin: “Thermodynamic Assessment of the BaO-B2O3 System,” J. Phase Equilibria, 1999, 20(5), pp. 479–84.

    Article  Google Scholar 

  5. H. Yu, H.S. Liu, and Z.P. Jin: “Thermodynamic Calculation of the Li2O-BaO-B2O3 Pseudo-Ternary Phase Diagram,” Z. Metallkd, 1999, 90(7), pp. 499–504.

    Google Scholar 

  6. H. Yu, Z.P. Jin, Q. Chen, and M. Hillert: “Thermodynamic Assessment of the Li2O-B2O3 System,” J. Am. Ceram. Soc., 2000, 83(11), pp. 3082–88.

    Article  Google Scholar 

  7. G.W. Morey and H.E. Merwin: “Phase Equilibrium Relations in the Binary System, Sodium Oxide-Boric Oxide with Some Measurements of the Optical Properties of the Glasses,” J. Am. Chem. Soc., 1936, 58, pp. 2248–54.

    Article  Google Scholar 

  8. T. Milman and R. Bouaziz: “Contribution A L’etude des Borates de Sodium,” Ann. Chim., 1968, 3(4), pp. 311–21 (in French).

    Google Scholar 

  9. J.K. Liang, C.M. Fang, and Q.Z. Huang: “The Mechanism of the Formation and Crystallization of the Glasses in the NaBo2-B2O3 System,” Acta Phys. Sin., 1990, 39(1), pp. 129–37 (in Chinese).

    Google Scholar 

  10. H. Li and J.K. Liang: “Dependence of Crystallization Behavior of Sodium Diborate (Na2O · 2B2O3) on Its Glass Structure and the Characteristics of Phase Transformation,” J. Am. Ceram. Soc., 1995, 78(2), pp. 470–78.

    Article  Google Scholar 

  11. F.E. Wagstaff and R.J. Charles: “Metastable Liquid Immiscibility in the Na2O-B2O3 System,” Am. Ceram. Soc. Bull., 1966, 45(4), p. 420.

    Google Scholar 

  12. R.R. Shaw and D.R. Uhlmann: “Subliquidus Immiscibility in Binary Alkali Borates,” J. Am. Ceram. Soc., 1968, 51(7), pp. 377–82.

    Article  Google Scholar 

  13. R.L. Hervig and A. Navrotsky: “Thermochemistry of Sodium Borosilicate Glasses,” J. Am. Ceram. Soc., 1985, 68(6), pp. 314–19.

    Article  Google Scholar 

  14. M. Fan: Ph.D. Thesis, RTWH, Aachen, Germany, 1991.

    Google Scholar 

  15. M. Itoh, S. Sato, and T. Yokokawa: “Emf Measurements of Molten Mixtures of Lithium Oxide+, Sodium Oxide+, and Potassium Oxide + Boron Oxide,” J. Chem. Thermodynamics, 1976, 8, pp. 339–52.

    Article  Google Scholar 

  16. W. Stegmaier and A. Dietzel: Glastech. Ber., 1940, 18, p. 353.

    Google Scholar 

  17. S. Sato, T. Yokokawa, H. Kita, and K. Niwa: J. Electrochem. Soc., 1972, 119, pp. 1524–26.

    Article  Google Scholar 

  18. H. Itoh, A. Sasahira, T. Maekawa, T. Yokokawa: “Electromotive-Force Measurements of Molten Oxide Mixtures, Part 8: Thermodynamic Properties of Na2O-B2O3 Melts,” J. Chem. Soc., Farad. Trans., 1984, 80, pp. 473–87.

    Article  Google Scholar 

  19. J.H. Park and D.J. Min: “Thermodynamic Behavior of Na2O-B2O3 Melt,” Metall. Mater. Trans. B, 2001, 32B(4), pp. 297–303.

    Article  ADS  Google Scholar 

  20. M.M. Shul’ts, V.L. Stolyarov, G.A. Semenov: “A Study of the Thermodynamic Properties of Melts in the 2NaBO2-B2O3 System Using a Mass Spectrometric Method,” Fiz. Khim. Stekla, 1979, 5, pp. 42–51.

    Google Scholar 

  21. L. Shartsis and W. Capps: “Energy Relations in Binary Alkali Borates,” J. Am. Ceram. Soc., 1954, 37(1), pp. 27–32.

    Article  Google Scholar 

  22. G.S. Smith and G.E. Rindone: “High-Temperature Energy Relations in the Alkali Borates: Binary Alkali Borate Compounds and Their Glasses,” J. Am. Ceram. Soc., 1961, 44(2), pp. 72–78.

    Article  Google Scholar 

  23. O. Kubaschewski, C.B. Alock, and P.J. Spencer: Metallurgical Thermochemistry, 6th ed., Pergamon Press, New York, 1993.

    Google Scholar 

  24. M. Hillert and X. Wang: “A Study of the Thermodynamic Properties of MgO-SiO2 System,” Calphad, 1989, 13(3), pp. 253–66.

    Article  Google Scholar 

  25. M. Hillert, B. Sundman, and X. Wang: “An Assessment of the CaO-SiO2 System,” Metall. Trans. B, 1990, 21B(2), pp. 303–12.

    Article  ADS  Google Scholar 

  26. B. Sundman, B. Jansson and J-O. Andersson: “The Thermo-Calc Databank System,” Calphad, 1985, 9(2), pp. 153–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Yu, H., Liu, H. et al. Thermodynamic optimization of the Na2O-B2O3 pseudo-binary system. JPE 24, 12–20 (2003). https://doi.org/10.1007/s11669-003-0003-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-003-0003-7

Keywords

Navigation