Skip to main content
Log in

Failure Analysis of the Various Sides of a Second-Stage Gas Turbine Nozzle Made of FSX-414 Cobalt-Based Alloy

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Second-stage gas turbine nozzles are an important part of the gas turbine due to their performance in hot temperature conditions. In this investigation, service-induced failure analysis and microstructural variations of different sides of a second-stage nozzle in a 100 MW gas turbine made of FSX-414 cobalt-based alloy were comprehensively studied to determine the conditions and mechanisms of the failure process. The primary carbides M3C2 and M7C3 types were converted to secondary carbides M23C6 type by phase transformation process and formed a continuous layer in the grain boundaries owing to high-temperature operation conditions. A network of cracks was created in the grain boundaries, leading to a fracture in the vane of the nozzle. The continuity and density of the produced carbides decreased ductility and toughness of the nozzle. The results demonstrated that hot oxidation and sulfidation occurred in the leading-edge zone. The aggregation and asymmetry of the combustion line and, consequently, the increasing temperature were the reasons for the damage. Some macrocracks were observed by visual inspection on the surface of the nozzle owing to exposure to high temperatures and placement in the path of the hot gas with high pressure. Based on the results, the continuous and coarse brittle M23C6 carbides on the grain boundaries were the major cause of the failure due to the crack growth caused by stress corrosion. These carbides provided appropriate paths for the growth of the crack through grain boundaries, leading to failure after the operational out-of-service condition of a second-stage gas turbine nozzle. Operational in over-hot conditions and an inappropriate filtration system were the main reasons for the operational-induced thermal fatigue failure process of the second-stage gas turbine nozzles. Based on the results, oxidation and microstructural variations were the main causes of the failure process of the second-stage gas turbine nozzles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. T. Giampaolo, Gas Turbine Handbook: Principles and Practice, 5th edn. (Fairmont Press, Lilburn, Georgia, 2013)

    Google Scholar 

  2. Z. Mazur, A. Luna-Ramirez, J.A. Juarez-Islas, A. Campos-Amezcua, Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng. Fail. Anal. 12, 474–486 (2005)

    Article  CAS  Google Scholar 

  3. N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components. Eng. Fail. Anal. 9, 31–43 (2002)

    Article  CAS  Google Scholar 

  4. M.R. Shirpay, H. Kazempour-Liacy, Failure analysis of a repaired gas turbine nozzle. J. Fail. Anal. Preven. 13, 243–248 (2013)

    Article  Google Scholar 

  5. Z. Mazur, A. Hernandez-Rossette, R. Garcia-Illescas, A. Luna-Ramirez, Failure analysis of a gas turbine nozzle. Eng. Fail. Anal. 15, 913–921 (2008)

    Article  CAS  Google Scholar 

  6. Y.V. Nawancy, L.M. Al-Hadhrami, Degradation of turbine blades and vanes by overheating in a power station. Eng. Fail. Anal. 16, 273–280 (2009)

    Article  Google Scholar 

  7. R. Citarella, G. Cricri, M. Lepore, M. Perrella, Thermo-mechanical crack propagation in aircraft engine vane by coupled FEM–DBEM approach. Adv. Eng. Softw. 67, 57–69 (2014)

    Article  Google Scholar 

  8. X. Wu, Z. Zhang, L. Jiang, P. Patnaik, Material selection issues for a nozzle guide vane against service-induced failure. J. Eng. Gas Turb. Pow. 139, 052101–052106 (2017)

    Article  Google Scholar 

  9. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, U.K., 2006)

    Book  Google Scholar 

  10. S.D. Cramer, B.S. Covino, Corrosion: Environments and Industries, ASM Handbook, 13C ASM International. (Materials Park, Ohio, 2006)

    Book  Google Scholar 

  11. T.J. Carter, Common failure in gas turbine blades. Eng. Fail. Anal. 12, 237–247 (2005)

    Article  Google Scholar 

  12. L.K. Bhagi, V. Rastogi, Fractographic investigations of the failure of L-1 low pressure turbine blade. Case Stud. Eng. Fail. Anal. 1, 72–78 (2013)

    Article  Google Scholar 

  13. J.A. Daleo, K.A. Ellison, D.H. Boone, Metallurgical considerations for life assessment and the safe refurbishment and requalification of gas turbine blades. J. Eng. Gas. Turb. Pow. 124, 571–579 (2002)

    Article  CAS  Google Scholar 

  14. Kh. Rahmani, A. Torabian, Influence of welding on low cycle fatigue properties of Co-based superalloy FSX-414. Trans. Nonferrous Metals Soc. China. 26, 1326–1335 (2016)

    Article  CAS  Google Scholar 

  15. O. Çoban, Ö.C. Arslan, T. Karahan, Failure analysis of jet turbine engine high pressure nozzle material made of cobalt based super alloy. Int. J. Eng. Nat. Sci. 1(1), 13–20 (2018)

    Google Scholar 

  16. M.F. Gazulla, M.J. Ventura, C. Andreu, J. Gilabert, M. Orduna, M. Rodrigo, Characterization of cobalt oxides transformation with temperature at different atmospheres. Int. J. Chem. Sci. 17, 1–9 (2019)

    Google Scholar 

  17. G.M. Kale, S.S. Pandit, K.T. Jacob, Thermodynamics of cobalt (II, III) oxide (Co3O4) evidence of phase transition. Trans. Japan Metals. 29, 125–132 (1988)

    CAS  Google Scholar 

  18. S. Fathi, Sh. Zangeneh, M. Pahlavani, A comprehensive analysis of premature failure in a cobalt-based superalloy X-45 gas turbine vane. J. Fail. Anal. Preven. 19, 1337–1347 (2019)

    Article  Google Scholar 

  19. F.M. Yang, X.F. Sun, H.R. Guan, Z.Q. Hu, On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature. Mater. Lett. 57, 2823–2828 (2003)

    Article  CAS  Google Scholar 

  20. Sh. Zangeneh, H. Farhangi, Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle. Mater. Des. 31, 3504–3511 (2010)

    Article  CAS  Google Scholar 

  21. A. Luna Ramirez, J.P. Calderon, Z. Mazur, V.M. Salinas-Bravo, L. Martinez-Gomez, Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle. Adv. Mater. Sci. Eng. 1, 1–7 (2016)

    Article  Google Scholar 

  22. E. Poursaeidi, M. Aieneravaie, M.R. Mohammadi, Failure analysis of a second stage blade in a gas turbine engine. Eng. Fail. Anal. 15, 1111–1129 (2008)

    Article  CAS  Google Scholar 

  23. B. Salehnasab, E. Poursaeidi, S.A. Mortazavi, G.H. Farokhian, Hot corrosion failure in the first stage nozzle of a gas turbine engine. Eng. Fail. Anal. 60, 316–325 (2016)

    Article  CAS  Google Scholar 

  24. A.A. Malekbarmi, S. Zangeneh, A. Roshani, Assessment of premature failure in a first stage gas turbine nozzle. Eng. Fail. Anal. 18, 1262–1271 (2011)

    Article  CAS  Google Scholar 

  25. E. Kosieniak, K. Biesiada, J. Kaczorowski, M. Innocenti, Corrosion failures in gas turbine hot components. J. Fail. Anal. Preven. 12, 330–337 (2012)

    Article  Google Scholar 

  26. M.P. Boyce, The Gas Turbine Handbook, 2nd edn. (Gulf Professional Publishing, Houston, Texas, 2002)

    Google Scholar 

  27. W. Gui, H. Zhang, M. Yang, T. Jin, X. Sun, Q. Zheng, The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J. Alloys Compd. 695, 127–1278 (2017)

    Article  Google Scholar 

  28. F.M. Yang, X.F. Sun, H.R. Guan, Z.Q. Hu, The effect of reheat treatment on microstructure and stress rupture property of a directionally solidified nickel based superalloy after long-term thermal exposure. Mater. Sci. Eng. A. 694, 48–56 (2017)

    Article  Google Scholar 

  29. S. Li, B. Wang, D. Shi, X. Yang, H. Qi, A physically based model for correlating the microstructural degradation and residual creep lifetime of a polycrystalline Ni based superalloy. J. Alloys Compd. 783, 565–573 (2019)

    Article  CAS  Google Scholar 

  30. S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Role of grain boundary carbides in cracking behavior of Ni base alloys. Nucl. Eng. Technol. 45, 73–80 (2013)

    Article  CAS  Google Scholar 

  31. Y. Liu, Y. Wu, J. Yu, J. Ju, Z. Zhang, M. Kang, J. Wang, B. Sun, Y. Ning, Temperature-dependent deformation mechanisms and microstructural degradation of a polycrystalline nickel-based superalloy. J. Alloys Compd. 775, 181–192 (2019)

    Article  CAS  Google Scholar 

  32. G.Y. Lai, High temperature corrosion and materials applications. (Materials Park, Ohio, 2007)

    Book  Google Scholar 

  33. R. Santorelli, E. Sivieri, R.C. Reggiani, High temperature corrosion of several commercial Fe-Cr-Ni alloys under a molten sodium sulphate deposit in oxidizing gaseous environments. Mater. Sci. Eng. 120, 283–291 (1989)

    Article  Google Scholar 

  34. M.R. Khajavi, M.H. Shariat, Failure of first stage gas turbine blades. Eng. Fail. Anal. 11, 589–597 (2004)

    Article  CAS  Google Scholar 

  35. T.S. Chowdhury, F.T. Mohsin, M.M. Tonni, M.N. Mita, M.M. Ehsan, A critical review on gas turbine cooling performance and failure analysis of turbine blades. Int. J. Thermofluids. 18, 100329 (2023)

    Article  CAS  Google Scholar 

  36. S.K.S. Al Adawi, G.R. Rameshkumar, Vibration diagnosis approach for industrial gas turbine and failure analysis. Br. J. Appl. Sci. Technol. 14(2), 1–9 (2016)

    Article  Google Scholar 

  37. B.A. Mohamad, A. Abdelhussien, Failure analysis of gas turbine blade using finite element analysis. Int. J. Mech. Eng. Technol. 7(3), 299–305 (2016)

    Google Scholar 

  38. S. Rani, A.K. Agrawal, V. Rastogi, Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant, Case Stud. Eng. Fail. Anal. 8, 1–10 (2017)

    Google Scholar 

  39. P. Puspitasari, A. Andoko, P. Kurniawan, Failure analysis of a gas turbine blade: a review. IOP Conf. Ser. Mater. Sci. Eng. 1034(1), 012156 (2021)

    Article  CAS  Google Scholar 

  40. S. Kumari, D.V.V. Satyanarayana, M. Srinivas, Failure analysis of gas turbine rotor blades. Eng. Fail. Anal. 45, 234–244 (2014)

    Article  CAS  Google Scholar 

  41. H. Kazempour-Liasi, A. Shafiei, Z. Lalegani, Failure analysis of first and second stage gas turbine blades. J. Fail. Anal. Prev. 19(6), 1673–1682 (2019)

    Article  Google Scholar 

  42. Z. Huda, Metallurgical failure analysis for a blade failed in a gas-turbine engine of a power plant. Mater. Des. 30(8), 3121–3125 (2009)

    Article  CAS  Google Scholar 

  43. S. Qu, C.M. Fu, C. Dong, J.F. Tian, Z.F. Zhang, Failure analysis of the 1st stage blades in gas turbine engine. Eng. Fail. Anal. 32, 292–303 (2013)

    Article  CAS  Google Scholar 

  44. S. Barella, M. Boniardi, S. Cincera, P. Pellin, X. Degive, S. Gijbels, Failure analysis of a third stage gas turbine blade. Eng. Fail. Anal. 18(1), 386–393 (2011)

    Article  CAS  Google Scholar 

  45. J.C. Chang, Y.H. Yun, C. Choi, J.C. Kim, Failure analysis of gas turbine buckets. Eng. Fail. Anal. 10(5), 559–567 (2003)

    Article  Google Scholar 

  46. A.M. Mirhosseini, S.A. Nazari, A.M. Pour, S.E. Haghighi, M. Zareh, Failure analysis of first stage nozzle in a heavy-duty gas turbine. Eng. Fail. Anal. 109, 104303 (2020)

    Article  CAS  Google Scholar 

  47. G.H. Farrahi, M. Tirehdast, E.M. Abad, S. Parsa, M. Motakefpoor, Failure analysis of a gas turbine compressor. Eng. Fail. Anal. 18(1), 474–484 (2011)

    Article  CAS  Google Scholar 

  48. N. Vardar, A. Ekerim, Failure analysis of gas turbine blades in a thermal power plant. Eng. Fail. Anal. 14(4), 743–749 (2007)

    Article  CAS  Google Scholar 

  49. R. Wang, B. Zhang, D. Hu, K. Jiang, H. Liu, J. Mao, F. Jing, X. Hao, Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade. Eng. Fail. Anal. 102(37), 35–45 (2019)

    Article  CAS  Google Scholar 

  50. Z. Mazur, A. Luna-Ramirez, J.A. Juárez-Islas, A. Campos-Amezcua, Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng. Fail. Anal. 12(3), 474–486 (2005)

    Article  CAS  Google Scholar 

  51. B. Swain, P. Mallick, S. Patel, R. Roshan, S.S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal, A. Behera, Failure analysis and materials development of gas turbine blades. Mater. Today Proc. 33(8), 5143–5146 (2020)

    Article  CAS  Google Scholar 

  52. R.K. Mishra, P. Kumar, K. Rajesh, C.R. Das, G. Sharma, D.K. Srivastava, Life enhancement of nozzle guide vane of an aero gas turbine engine through pack aluminization. Int. J. Turbo Jet Engines. 38(1), 51–58 (2021)

    Article  Google Scholar 

  53. R.K. Mishra, J. Thomas, K. Srinivasan, V. Nandi, R. Bhat, Failure analysis of nozzle guide vane of a low pressure turbine in an aero gas turbine engine. J. Fail. Anal. Prev. 14, 578–587 (2014)

    Article  Google Scholar 

  54. M. Jafari Eskandari, M. Karimi, M. Araghchi, A. Hadipour, Laser cleaning process of high-pressure turbine blade: characterization and removal of surface contaminants. Surf. Coat. Technol. 470, 129885 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In addition, the authors gratefully acknowledge the financial support of the SEM, XRD, OM, laser, and metallographic laboratories of National Center for R&D of Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Ali Hadipour was involved in conceptualization, methodology, visualization, investigation, data curation, reviewing and editing. Mohammad Jafari Eskandari contributed to conceptualization, methodology, data curation, writing—original draft preparation, visualization, investigation, writing—reviewing and editing, reviewing and editing. Mohammad Ghasem Gholami contributed to reviewing and editing. Mohsen Mehdizadeh contributed to reviewing and editing.

Corresponding author

Correspondence to Mohammad Jafari Eskandari.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadipour, A., Jafari Eskandari, M., Gholami, M.G. et al. Failure Analysis of the Various Sides of a Second-Stage Gas Turbine Nozzle Made of FSX-414 Cobalt-Based Alloy. J Fail. Anal. and Preven. 24, 838–854 (2024). https://doi.org/10.1007/s11668-024-01877-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-024-01877-y

Keywords

Navigation