Skip to main content
Log in

Research on Residual Life Prediction Method of Composites Based on Equivalent Number of Cycles Conversion

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

It is crucial to propose an accurate fatigue life prediction method to ensure the structural integrity and operational reliability of engineering components in real-world service conditions. This paper considers how the uncertainty of fatigue failure in composite materials under variable amplitude loading conditions affects material fatigue life. It proposes an improved method to predict the residual fatigue life of a composite material by converting the number of loading cycles under different loading sequences. Firstly, the method suggests that the number of loading cycles for the same composite material, under variable amplitude loading conditions and at different stress levels, conforms to the assumptions of the Weibull cumulative distribution and the principle of probabilistic consistency. Using this assumption, a transformation model is established for the number of cyclic loading cycles in composite materials under variable amplitude loading conditions. Specifically, the model can convert the number of loading cycles under various loading sequences into an equivalent number of cycles under a uniform loading condition. Next, the residual fatigue life of the specimen at the final stress level was determined by analyzing fatigue test data under variable amplitude loading conditions. Finally, the proposed method is validated and compared using fatigue test data from the literature, which includes composites tested under two and three variable amplitude loading conditions. Validation results indicate that the proposed method for predicting residual fatigue life offers more accurate predictions, with all predicted life factors falling within ± 1.2 life factors. Additionally, compared to other existing models for predicting residual life, the proposed method effectively captures the impact of randomness and uncertainty in the fatigue failure process of composite materials using probabilistic statistical theory. This offers a more valuable reference for predicting fatigue life under variable amplitude load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Gao, C. Wang, Z. Xu et al., Gaussian process regression based remaining fatigue life prediction for metallic materials under two-step loading. Int. J. Fatigue. 158, 106730 (2022)

    Article  CAS  Google Scholar 

  2. J. Gao, Y. Yuan, Probabilistic model of fatigue damage accumulation of materials based on the principle of failure probability equivalence. Structures. 28, 659–667 (2020)

    Article  Google Scholar 

  3. J. Liu, X. Liu, An improved method for fatigue life prediction of metal materials based on thermodynamic entropy. Int. J. Fatigue. 170, 107546 (2023)

    Article  CAS  Google Scholar 

  4. N.D. Batsoulas, Cumulative fatigue damage: CDM-based engineering rule and life prediction aspect. Steel Res. Int. 87, 1670–1677 (2016)

    Article  CAS  Google Scholar 

  5. L. Gan, X. Zhao, H. Wu et al., Estimation of remaining fatigue life under two-step loading based on kernel-extreme learning machine. Int. J. Fatigue. 148, 106190 (2021)

    Article  Google Scholar 

  6. Z. Peng, H.-Z. Huang, J. Zhou et al., A new cumulative fatigue damage rule based on dynamic residual SN curve and material memory concept. Metals. 8, 456 (2018)

    Article  Google Scholar 

  7. S. Yang, L. Yang, Y. Wang, Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties. Eng. Fract. Mech. 226, 106866 (2020)

    Article  Google Scholar 

  8. H. Wang, H. Liao, X. Ma, Remaining useful life prediction considering joint dependency of degradation rate and variation on time-varying operating conditions. IEEE Trans. Reliab. 70, 761–774 (2020)

    Article  Google Scholar 

  9. S. Feng, X. Han, Z. Li et al., Ensemble learning for remaining fatigue life prediction of structures with stochastic parameters: a data-driven approach. Appl. Math. Model. 101, 420–431 (2022)

    Article  Google Scholar 

  10. S.P. Zhu, Y.Z. Hao, J.A. de Oliveira Correia et al., Nonlinear fatigue damage accumulation and life prediction of metals: a comparative study. Fatigue Fract. Eng. Mater. Struct. 42, 1271–1282 (2019)

    Article  Google Scholar 

  11. F. Silva, The importance of compressive stresses on fatigue crack propagation rate. Int. J. Fatigue. 27, 1441–1452 (2005)

    Article  CAS  Google Scholar 

  12. R.M. Nejad, Z. Liu, W. Ma et al., Reliability analysis of fatigue crack growth for rail steel under variable amplitude service loading conditions and wear. Int. J. Fatigue. 152, 106450 (2021)

    Article  Google Scholar 

  13. Q.-Y. Deng, S.-P. Zhu, J.-C. He et al., Multiaxial fatigue under variable amplitude loadings: review and solutions. Int. J. Struct. Integr. 13(3), 349–393 (2022)

    Article  Google Scholar 

  14. F. Mozafari, P. Thamburaja, A. Srinivasa et al., Fatigue life prediction under variable amplitude loading using a microplasticity-based constitutive model. Int. J. Fatigue. 134, 105477 (2020)

    Article  CAS  Google Scholar 

  15. F.-J. Zuo, H.-Z. Huang, S.-P. Zhu et al., Fatigue life prediction under variable amplitude loading using a non-linear damage accumulation model. Int. J. Damage Mech. 24, 767–784 (2015)

    Article  Google Scholar 

  16. X. Yu, T. Yu, K. Song et al., RETRACTED: reliability analysis of mechanical components based on a nonlinear fatigue damage accumulation model. Int. J. Damage Mech. 28, 1135–1149 (2019)

    Article  Google Scholar 

  17. X. Xu, Y. Li, W. Huang et al., Fatigue design of steel bridge deck asphalt pavement based on nonlinear damage accumulation theory. Appl. Sci. 11, 5668 (2021)

    Article  CAS  Google Scholar 

  18. T. Huang, R.-C. Ding, Y.-F. Li et al., A modified model for nonlinear fatigue damage accumulation of turbine disc considering the load interaction effect. Metals. 9, 919 (2019)

    Article  CAS  Google Scholar 

  19. M.A. Miner, Cumulative damage in fatigue. J. Appl. Mech. 12(3), A159–A164 (1945)

    Article  Google Scholar 

  20. Z. Peng, H.-Z. Huang, H.-K. Wang et al., A new approach to the investigation of load interaction effects and its application in residual fatigue life prediction. Int. J. Damage Mech. 25, 672–690 (2016)

    Article  CAS  Google Scholar 

  21. V. Strizhius, Estimation of the residual fatigue life of laminated composites under a multistage cyclic loading. Mech. Compos. Mater. 52, 611–622 (2016)

    Article  Google Scholar 

  22. R. Yuan, H. Li, H.-Z. Huang et al., A nonlinear fatigue damage accumulation model considering strength degradation and its applications to fatigue reliability analysis. Int. J. Damage Mech. 24, 646–662 (2015)

    Article  Google Scholar 

  23. M. Prabhakar, A. Prasad, M. Paswan, Influence of loading sequence and residual stresses affecting the fatigue life of axle housing and crack path analysis using local approaches. Eng. Fail. Anal. 116, 104753 (2020)

    Article  Google Scholar 

  24. Q. Sun, H.-N. Dui, X.-L. Fan, A statistically consistent fatigue damage model based on Miner’s rule. Int. J. Fatigue. 69, 16–21 (2014)

    Article  CAS  Google Scholar 

  25. A. Aïd, A. Amrouche, B.B. Bouiadjra et al., Fatigue life prediction under variable loading based on a new damage model. Mater. Des. 32, 183–191 (2011)

    Article  Google Scholar 

  26. H. Usabiaga, M. Muniz-Calvente, M. Ramalle et al., Improving with probabilistic and scale features the Basquin linear and bi-linear fatigue models. Eng. Fail. Anal. 116, 104728 (2020)

    Article  Google Scholar 

  27. S. Marco, W. Starkey, A concept of fatigue damage. Trans. Am. Soc. Mech. Eng. 76, 627–632 (1954)

    Article  Google Scholar 

  28. K. Gao, G. Liu, Novel nonlinear time-varying fatigue reliability analysis based on the probability density evolution method. Int. J. Fatigue. 149, 106257 (2021)

    Article  Google Scholar 

  29. Y. Chen, P. Xu, C. Liu et al., Multiaxial fatigue behavior and life prediction of 7075–T651 aluminum alloy under two-step loading. Eng. Fract. Mech. 230, 107007 (2020)

    Article  Google Scholar 

  30. V. Dattoma, S. Giancane, R. Nobile et al., Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. Int. J. Fatigue. 28, 89–95 (2006)

    Article  CAS  Google Scholar 

  31. S.-P. Zhu, D. Liao, Q. Liu et al., Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects. Int. J. Fatigue. 128, 105185 (2019)

    Article  Google Scholar 

  32. Z. Feng, Q. Ma, Z. An et al., New fatigue life prediction model for composite materials considering load interaction effects. Int. J. Appl. Mech. 15(9), 2350076 (2023)

    Article  Google Scholar 

  33. S. Benkabouche, H. Guechichi, A. Amrouche et al., A modified nonlinear fatigue damage accumulation model under multiaxial variable amplitude loading. Int. J. Mech. Sci. 100, 180–194 (2015)

    Article  Google Scholar 

  34. S. Shiri, M. Yazdani, M. Pourgol-Mohammad, A fatigue damage accumulation model based on stiffness degradation of composite materials. Mater. Des. 88, 1290–1295 (2015)

    Article  Google Scholar 

  35. J. Gao, P. Zhu, Y. Yuan et al., Strength and stiffness degradation modeling and fatigue life prediction of composite materials based on a unified fatigue damage model. Eng. Fail. Anal. 137, 106290 (2022)

    Article  CAS  Google Scholar 

  36. H. Liu, Z. Zhang, H. Jia et al., A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models. Compos. Struct. 252, 112702 (2020)

    Article  Google Scholar 

  37. J. Jang, M.M. Khonsari, On the prediction of fatigue life subjected to variable loading sequence. Fatigue Fract. Eng. Mater. Struct. 44, 2962–2974 (2021)

    Article  Google Scholar 

  38. A. Califano, L. Grassia, A. D’Amore, Fatigue of composite materials subjected to variable loadings. J. Mater. Eng. Perform. 28, 6538–6543 (2019)

    Article  CAS  Google Scholar 

  39. A. D’Amore, L. Grassia, A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings. Compos. Struct. 228, 111338 (2019)

    Article  Google Scholar 

  40. A. D’Amore, L. Grassia, Principal features of fatigue and residual strength of composite materials subjected to constant amplitude (CA) loading. Materials. 12, 2586 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  41. C. Li, S. Wu, J. Zhang et al., Determination of the fatigue PSN curves: a critical review and improved backward statistical inference method. Int. J. Fatigue. 139, 105789 (2020)

    Article  CAS  Google Scholar 

  42. J. Gao, Y. Yuan, Small sample test approach for obtaining P–S–N curves based on a unified mathematical model. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234, 4751–4760 (2020)

    Article  Google Scholar 

  43. Q. Ma, Z. An, X. Bai et al., New probabilistic SN curves modeling method with small-sample test data of composite materials. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235, 5665–5674 (2021)

    Article  Google Scholar 

  44. W. Tianshuai, H. Xiaofan, W. Jinyu et al., Detail fatigue rating method based on bimodal Weibull distribution for DED Ti–6.5 Al–2Zr–1Mo–1V titanium alloy. Chin. J. Aeronaut. 35, 281–291 (2022)

    Article  Google Scholar 

  45. Z.A. Cameron, T.L. Krantz, Statistical distribution of gear surface fatigue lives at high reliability. Int. J. Fatigue. 167, 107350 (2023)

    Article  Google Scholar 

  46. M.S. Tareq, B. Jony, S. Zainuddin et al., Fatigue analysis and fracture toughness of graphene reinforced carbon fibre polymer composites. Fatigue Fract. Eng. Mater. Struct. 44, 461–474 (2021)

    Article  CAS  Google Scholar 

  47. L. Ke, F. Zhu, Z. Chen et al., Fatigue failure mechanisms and probabilistic SN curves for CFRP–steel adhesively bonded joints. Int. J. Fatigue. 168, 107470 (2023)

    Article  CAS  Google Scholar 

  48. L. Xie, J. Liu, N. Wu et al., Backwards statistical inference method for P–S–N curve fitting with small-sample experiment data. Int. J. Fatigue. 63, 62–67 (2014)

    Article  Google Scholar 

  49. J.F. Barbosa, R. Carlos Silverio Freire Júnior, J.A. Correia et al., Analysis of the fatigue life estimators of the materials using small samples. J. Strain Anal. Eng. Des. 53, 699–710 (2018)

    Article  Google Scholar 

  50. H.-C. Cheng, F.-S. Hwu, Fatigue reliability analysis of composites based on residual strength. Adv. Compos. Mater. 15, 385–402 (2006)

    Article  CAS  Google Scholar 

  51. J. Gao, Y. Yuan, R. Xu, A framework for fatigue life prediction of materials under the multi-level cyclic loading. Eng. Fail. Anal. 127, 105496 (2021)

    Article  Google Scholar 

  52. F. Wu, W. Yao, A fatigue damage model of composite materials. Int. J. Fatigue. 32, 134–138 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [51665029], Industrial Support Plan for Colleges and Universities in Gansu Province of China [2020C-12], 2022 Higher Education Innovation Fund Project in Gansu Province of China [2022A-018], Gansu Province Science and Technology Program Funding [22JR5RA238], National Natural Science Foundation of China [52365017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Feng, Z., Ma, H. et al. Research on Residual Life Prediction Method of Composites Based on Equivalent Number of Cycles Conversion. J Fail. Anal. and Preven. 24, 708–720 (2024). https://doi.org/10.1007/s11668-024-01875-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-024-01875-0

Keywords

Navigation