Skip to main content
Log in

Contact Welding Failure Analysis of Micro Electromagnetic Relays in Electrical Endurance Experiments

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Contact welding issues originating from the switching events extremely limit the lifespan and reliability of micro electromagnetic relays. In this paper, the contact welding failure phenomena of micro electromagnetic relays are recurred with the designed model switch. Meanwhile, the variations in contact voltage and contact resistance are recorded explicitly in the electrical endurance experiments, and the extracted contact break duration is used to characterize the contact welding phenomenon. Then, the contact welding failure mechanism is revealed with the help of the evolution of the eroded surface morphology and contact voltage. It is determined that the successive breaking behavior of parallel contact asperities is a threat of contact welding failure. By comparison, a novel designed rod contact with convex hull feature could inhibit the contact breaking delay phenomenon effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Engineer’s relay handbook [Sixth Edition]. Relay and switch association (ECIA). 2006

  2. T. Cao, Hu. Tengjiang, Y. Zhao, Research Status and development trend of MEMS switches: a review. Micromachines. 11(7), 694 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bo. Wan, Fu. Guicui, Y. Li et al., Failure analysis of the electromagnetic relay contacts. Eng. Fail. Anal. 59, 304–313 (2016)

    Article  CAS  Google Scholar 

  4. B.F. Toler, R.A. Coutu, J.W. McBride, A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J. Micromech. Microeng. 23, 103001 (2013)

    Article  ADS  Google Scholar 

  5. P.G. Slade, Electrical contacts: principles and applications, 2nd edn. (CRC Press, New York, 2013)

    Google Scholar 

  6. M. Hasegawa, Y. Tamaki, Y. Kamada, An experimental study on minimum arc current of relay contacts and possible re-interpretation of the meaning thereof, electrical Contacts, in Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts, (2006) 153-158

  7. Z.-K. Chen, G. Witter, Electrical contacts for automotive applications a review. IEICE Trans. Electron. E87-C(8), 1248–1254 (2004)

    Google Scholar 

  8. Xu. Zhang, W. Ren, S. Wang, Experimental investigation of contact welding characteristics of electromechanical relays. IEEE Trans. Industr. Electron. 68(9), 8531–8539 (2021)

    Article  Google Scholar 

  9. A.R. Neuhaus, W.F. Rieder, M. Hammerschmidt, Influence of electrical and mechanical parameters on contact welding in low power switches. IEEE Trans. Compon. Packag. Technol. 27(1), 4–11 (2004)

    Article  Google Scholar 

  10. T.J. Schoepf, R. Rowlands, G.A. Drew, Contact welding at break of motor inrush current. IEEE Trans. Compon. Packag. Technol. 29(2), 278–285 (2006)

    Article  Google Scholar 

  11. W. F. Rieder, A. R. Neuhaus. Contact welding influenced by anode arc and cathode arc, respectively. Proceeding of 50th IEEE Holm conference on electrical contacts, Seattle, WA, USA, 2004, pp. 378-381.

  12. L. Morin, N. Ben Jemaa, D. Jeannot, Make arc erosion and welding in automotive area. IEEE Trans. Compon. Packag. Technol. 23(2), 240–246 (2000)

    Article  CAS  Google Scholar 

  13. Chieh Tsung Chi, An approach to the reduction of contact bounce for AC contactor. Int. J. Innov. Computi. Inf. Control. 5(10), 3031–3044 (2009)

    Google Scholar 

  14. D. Smugala, Switching-on operation of an electromagnetic relays optimization using a phase control approach. IEEE Trans. Industr. Electron. 68(7), 6152–6160 (2021)

    Article  Google Scholar 

  15. L.X. Liu, W.Y. Yang et al., A novel nonlinear dynamic model for predicting contact bounce of electromagnetic relays with flexible spring components. IEEE Trans. Compon. Packag. Technol. 12(8), 1318–1328 (2022)

    Google Scholar 

  16. Alexander R. Neuhaus, Werner F. Rieder. The influence of load and contact material on the tangential separation force of low current switching contacts, in proceeding of 51st IEEE Holm conference on electrical contacts. 2005:144-150

  17. P. Decuzzi, G.P. Demelio, G. Pascazio, V. Zaza, Bouncing dynamics of resistive microswitches with an adhesive tip. J. Appl. Phys. 100, 024313 (2006)

    Article  ADS  Google Scholar 

  18. R.P. LaRose and K.D. Murphy. Impact dynamics of MEMS switches. Springer Science Business Media B.V., 2009

  19. J.C. Blecke, D.S. Epp, H. Sumali, G.G. Parker, A simple learning control to eliminate RF-MEMS switch bounce. J. Microelectromech. Syst. 18(2), 458–465 (2009)

    Article  Google Scholar 

  20. A. Tazzoli et al., Study of the actuation speed, bounces occurrences and contact reliability of ohmic RF-MEMS switches. Microelectron. Reliab. 50, 1604–1608 (2010)

    Article  CAS  Google Scholar 

  21. Z.J. Guo, N.E. McGruer, G.G. Adams, Modeling, simulation and measurement of the dynamic performance of an ohmic contact electrostatically actuated RF MEMS switch. J. Micromech. Microeng. 17, 1899–1909 (2007)

    Article  ADS  Google Scholar 

  22. D.A. Czaplewski et al., A soft-landing waveform for actuation of a single-pole single-throw ohmic RF MEMS switch. J. Microelectromech. Syst. 15(6), 1586–1594 (2006)

    Article  Google Scholar 

  23. A. Fruehling, W. Yang, and D. Peroulis, Cyclic evolution of bouncing for contacts in commercial RF MEMS switches, IEEE MEMS conf., 2012:688-691

  24. Peschot Alexis, Poulain Christophe, Valadares Clarissa, et al. Evolution of contact bounces in MEMS switches under cycling, in proceedings of 60th IEEE Holm Conference on Electrical Contacts. 2014:423-428

  25. https://www.teledynedefenseelectronics.com/relays/Pages/home.aspx

  26. T.J. Schoepf, A. Boudina, R.D. Rowlands et al., Pre-conditioning automotive relay contacts to increase their resistance to dynamic welding[J]. IEICE Trans. Electron. E90-C(7), 1441–1447 (2007)

    Article  ADS  Google Scholar 

  27. W.B. Ren, C. Chang, Y. Chen, Formation process of intermittent molten bridge between Au-plated contacts at super low breaking velocity[J]. Plasma Sci. Technol. 18(3), 236–240 (2016)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude for the kind support provided by the National Natural Science Foundation of China (Contract Number 52377140), The Postdoctoral Science Foundation of China (Contract Number 2023M730849) and The Postdoctoral Science Foundation of Heilongjiang (Contract Number LBH-Z22189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanbin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zheng, Z., Ren, W. et al. Contact Welding Failure Analysis of Micro Electromagnetic Relays in Electrical Endurance Experiments. J Fail. Anal. and Preven. 24, 380–390 (2024). https://doi.org/10.1007/s11668-023-01846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01846-x

Keywords

Navigation