Skip to main content
Log in

Failure Analysis of Silicon Solar Cells in the Presence of Cracks: Correlated to Partial Shading

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The performance of Silicon solar cells is effected by the presence of cracks which are inevitable. These cracks exist in different patterns in the cells. Any given particular pattern of cracks leads to formation of recombination centers and insulated areas. Furthermore, these crack patterns lead to the formation of hot spots leading to the temperature increase and failure of performance of solar cells. In this study, the failure of performance of solar module is analyzed considering different crack patterns leading to different amount of areas of insulation. However, this particular percentage of insulated area is correlated with the percentage of shaded area in the module due to obstruction of sun light falling on the cells. The performance of Silicon solar cells is implemented through a specialized lens known as the single-diode model. The impact of cracks is examined in terms of partial shading conditions and plots that unveil the power-voltage and current–voltage characteristics of the PV panels across various conditions are constructed using MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. B. Javvaji, P.R. Budarapu, M. Paggi, X. Zhuang, T. Rabczuk, Fracture properties of graphene-coated silicon for photovoltaics. Adv. Theory Simul. 1(12), 1800097 (2018)

    Article  Google Scholar 

  2. S. Pingel, Y. Zemen, O. Frank, T. Geipel, J. Berghold, Mechanical stability of solar cells within solar panels. Proc. of 24th EUPVSEC, 3459–3464 (2009)

  3. A. M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, L. Felton, M. Davis, B. Atchley, T. Williams, Soldering induced damage to thin si solar cells and detection of cracked cells in modules. in: 21st European Photovoltaic Solar Energy Conference, pp. 4–8 (2006)

  4. X. Gou, X. Li, S. Wang, H. Zhuang, X. Huang, L. Jiang, The effect of microcrack length in silicon cells on the potential induced degradation behavior. Int. J. Photoenergy. 1–6, 2018 (2018)

    Google Scholar 

  5. M. Aghaei, A. Fairbrother, A. Gok, S. Ahmad, S. Kazim, K. Lobato, G. Oreski, A. Reinders, J. Schmitz, M. Theelen et al., Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 159, 112160 (2022)

    Article  CAS  Google Scholar 

  6. S.D.V.S.S.V. Siruvuri, P.R. Budarapu, M. Paggi, Current–voltage characteristics of silicon based solar cells in the presence of cracks: Md simulations. Semicond. Sci. Technol. 37(2), 025011 (2021)

    Article  Google Scholar 

  7. S.S.D.V.S.S. Varma, K.R. Mangipudi, P.R. Budarapu, A coupled quantum-molecular mechanics approach for performance analysis of defective silicon based photovoltaic solar cells. Phys. Scr. 98(3), 035007 (2023)

    Article  Google Scholar 

  8. S.D.V.S.S.V. Siruvuri, P.R. Budarapu, M. Paggi, Influence of cracks on fracture strength and electric power losses in silicon solar cells at high temperatures: deep machine learning and molecular dynamics approach. Appl. Phys. A. 129(6), 408 (2023)

    Article  CAS  Google Scholar 

  9. M. Dhimish, V. Holmes, M. Dales, B. Mehrdadi, Effect of micro cracks on photovoltaic output power: case study based on real time long term data measurements. Micro Nano Lett. 12(10), 803–807 (2017)

    Article  CAS  Google Scholar 

  10. D.C. Nguyen, Y. Ishikawa, Y. Uraoka, Recover possibilities of potential induced degradation caused by the micro-cracked locations in p-type crystalline silicon solar cells. Prog. Photovoltaics Res. Appl. 29(4), 423–432 (2021)

    Article  CAS  Google Scholar 

  11. M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, B. Bjørneklett, The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells. 95(4), 1131–1137 (2011)

    Article  Google Scholar 

  12. S. Kajari-Schröder, I. Kunze, U. Eitner, M. Köntges, Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Sol. Energy Mater. Sol. Cells. 95(11), 3054–3059 (2011)

    Article  Google Scholar 

  13. S. Kajari-Schršder, I. Kunze, M. Kšntges, Criticality of cracks in pv modules. Energy Procedia. 27, 658–663 (2012)

    Article  Google Scholar 

  14. H.M. Niyaz, R. Meena, R. Gupta, Impact of cracks on crystalline silicon photovoltaic modules temperature distribution. Sol. Energy. 225, 148–161 (2021)

    Article  Google Scholar 

  15. A. Morlier, F. Haase, M. Kontges, Impact of cracks in multicrystalline silicon solar cells on PV module power-a simulation study based on field data. IEEE J. Photovolt. 5(6), 1735–1741 (2015)

    Article  Google Scholar 

  16. M.M. Rahman, M. Hasanuzzaman, N.A. Rahim, Temperature effect of photovoltaic module under partial shading operation condition (2014)

  17. M. Bressan, A. Gutierrez, L.G. Gutierrez, C. Alonso, Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems. Renew. Energy. 127, 334–343 (2018)

    Article  Google Scholar 

  18. I. Geisemeyer, F. Fertig, W. Warta, S. Rein, M.C. Schubert, Prediction of silicon pv module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography. Sol. Energy Mater. Sol. Cells. 120, 259–269 (2014)

    Article  CAS  Google Scholar 

  19. A.Y., Appiah, X., Zhang, B.B.K. Ayawli, F. Kyeremeh, et al. Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques. Int. J. Photoenergy 2019 (2019)

  20. H. Tao, Z.J. Mohamad, M. Kengo, A novel global MPPT technique to enhance maximum power from pv systems under variable atmospheric conditions. Soft Comput. 1–14 (2023)

  21. H. Patel, V. Agarwal, Matlab-based modeling to study the effects of partial shading on pv array characteristics. IEEE Trans. Energy Convers. 23(1), 302–310 (2008)

    Article  Google Scholar 

  22. A. Bidram, A. Davoudi, R.S. Balog, Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J. Photovolt. 2(4), 532–546 (2012)

    Article  Google Scholar 

  23. F. Bayrak, G. Ertürk, H.F. Oztop, Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. J. Clean. Prod. 164, 58–69 (2017)

    Article  Google Scholar 

  24. R. Ahmad, A.F. Murtaza, H.A. Sher, U.T. Shami, S. Olalekan, An analytical approach to study partial shading effects on pv array supported by literature. Renew. Sustain. Energy Rev. 74, 721–732 (2017)

    Article  Google Scholar 

  25. K. Osmani, A. Haddad, H. Jaber, T. Lemenand, B. Castanier, M. Ramadan, Mitigating the effects of partial shading on PV system’s performance through PV array reconfiguration: a review. Therm. Sci. Eng. Prog. 31, 101280 (2022)

    Article  Google Scholar 

  26. J.I. Van Mölken, U.A. Yusufoğlu, A. Safiei, H. Windgassen, R. Khandelwal, T.M. Pletzer, H. Kurz, Impact of micro-cracks on the degradation of solar cell performance based on two-diode model parameters. Energy Procedia. 27, 167–172 (2012)

    Article  Google Scholar 

  27. T. Salmi, M. Bouzguenda, A. Gastli, A. Masmoudi, Matlab/simulink based modeling of photovoltaic cell. Int. J. Renew. Energy Res. 2(2), 213–218 (2012)

    Google Scholar 

  28. Simulink Documentation. Simulation and model-based design (2022)

  29. M.C. Alonso-García, J.M. Ruíz, Analysis and modelling the reverse characteristic of photovoltaic cells. Sol. Energy Mater. Sol. Cells. 90(7–8), 1105–1120 (2006)

    Article  Google Scholar 

  30. M.C. Alonso-Garcia, J.M. Ruiz, F. Chenlo, Experimental study of mismatch and shading effects in the i–v characteristic of a photovoltaic module. Sol. Energy Mater. Sol. Cells. 90(3), 329–340 (2006)

    Article  CAS  Google Scholar 

  31. M. Saadsaoud et al., Study of partial shading effects on photovoltaic arrays with comprehensive simulator for global mppt control. Int. J. Renew. Energy Res. (IJRER). 6(2), 413–420 (2016)

    Google Scholar 

  32. I. Berardone, M. Corrado, M. Paggi, A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. Energy Procedia. 55, 22–29 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.D.V.S.S Varma Siruvuri is thankful to Dr. P.R. Budarapu and Manish Gupta of School of Mechanical Sciences at Indian Institute of Technology Bhubaneswar, India, for helping me to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. V. S. S. Varma Siruvuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siruvuri, S.D.V.S.S.V. Failure Analysis of Silicon Solar Cells in the Presence of Cracks: Correlated to Partial Shading. J Fail. Anal. and Preven. 23, 2511–2518 (2023). https://doi.org/10.1007/s11668-023-01786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01786-6

Keywords

Navigation