Skip to main content

Advertisement

Log in

Numerical Simulation of Pipeline Failure Mechanisms Under Lightning Strikes, Capturing Electric Disruption and Thermal Damage

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This study presents a computational analysis of pipeline failure and soil penetration when struck by lightning. A numerical method based on an electro-thermal coupled model is proposed for this purpose. The electric disruption of soil and the thermal damage of pipelines are used to represent engineering failures and calamities. The heterogeneity of the soil and the temporal-spatial distribution of lightning are considered when modelling natural lightning and the ground. Innovative numerical simulations illuminate the mechanisms and processes underlying electrical disasters and pipeline failure. The simulation results indicate that lightning strikes can induce electric penetration in soils and damage underground pipelines. Under the calculative conditions of this article, a cloud-to-ground lightning strike with a voltage of 10 kV can cause a thermal breakdown hole in an underground conduit with a wall thickness of 0.05 m and a depth of 1 m. At the same time, the temperature rises to 500 °C at the location of the pipe perforation opening and 200 °C at the location of the unperforated pipe. The novel numerical method may reveal the mechanism of pipeline failure and the electric penetration of soil during lightning impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Some or all data, models or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Bhumkittipich, B. Topradith, T. Suwanasri, Analysis of lightning phenomena for underground petroleum pipeline system. Energy Procedia. 34, 148–158 (2013)

    Article  Google Scholar 

  2. P. Venturino, J.N. Booman, M.O. Gonzalez, J.L. Otegui, Pipeline failures due to lightning. Eng. Fail. Anal. 64, 1–12 (2016)

    Article  Google Scholar 

  3. P.P. Rao, P.H. Ouyang, S. Nimbalkar, Q.S. Chen, J.F. Cui, Analytical modelling of the mechanical damage of soil induced by lightning strikes capturing electro-thermal, thermo-osmotic, and electro-osmotic effects. J. Mt. Sci. 19(7), 2027–2043 (2022)

    Article  Google Scholar 

  4. Z.L. Wu, P.P. Rao, S. Nimbalkar, Q.S. Chen, J.F. Cui, P.H. Ouyang, A semi-analytical solution for shock wave pressure and radius of soil plastic zone induced by lightning strikes. Materials. 15(6), 2239 (2022)

    Article  CAS  Google Scholar 

  5. M. Rabbani, A.M. Oo, A. Stojcevski, Analysis of lightning current characteristics to investigate lightning strike damages to energy pipeline, in 2014 International Conference on Lightning Protection (ICLP), 528–532 (2014)

  6. C.A. Charalambous, A. Dimitriou, N. Kioupis, T. Manoli, N.D. Kokkinos, Wall fusion of buried pipelines due to direct lightning strikes: field, laboratory, and simulation investigation of the damaging mechanism. IEEE Trans. Power Deliv. 35(2), 763–773 (2020)

    Article  Google Scholar 

  7. Q. Li, X.L. Liu, L.J. Wang, H.X. Wang, Z.T. Jiang, S.S. Chen, C.L. Lu, Studies on ablation failure on pipeline related to lightning strikes. Eng. Fail. Anal. 111, 104499 (2020)

    Article  CAS  Google Scholar 

  8. N. Klairuang, W. Pobporn, J. Hokierti, Effects of electric fields generated by direct lightning strikes on ground to underground cables, in 2004 International Conference on Power System Technology. PowerCon. IEEE, 1117–1121 (2004)

  9. G.T. Quickel, J.A. Beavers, Pipeline failure results from lightning strike: act of mother nature. J. Fail. Anal. Prev. 11(3), 227–232 (2011)

    Article  Google Scholar 

  10. Y.Q. Gao, J.L. He, J. Zou, R. Zeng, X.D. Liang, Fractal simulation of soil breakdown under lightning current. J. Electrostat. 61(3–4), 197–207 (2004)

    Article  Google Scholar 

  11. R. Zeng, C.J. Zhuang, X. Zhou, S. Chen, Z.Z. Wang, Z.Q. Yu, J.L. He, Survey of recent progress on lightning and lightning protection research. High Volt. 1(1), 2–10 (2016)

    Article  Google Scholar 

  12. K.C. Pitike, W. Hong, Phase-field model for dielectric breakdown in solids. J. Appl. Phys. 115(4), 044101 (2014)

    Article  Google Scholar 

  13. S.W. Liu, W.X. Sima, T. Yuan, D.H. Luo, Y. Bai, M. Yang, Study on X-ray imaging of soil discharge and calculation method of the ionization parameters. IEEE Trans. Power Deliv. 32(4), 2013–2021 (2017)

    Article  Google Scholar 

  14. S.L.J. Millen, A. Murphy, Modelling and understanding edge glow effects on material failure resulting from artificial lightning strike. Compos. Struct. 278(15), 114651 (2021)

    Article  CAS  Google Scholar 

  15. D. Luo, W.X. Sima, T. Yuan, P. Sun, W. Chen, J. Wang, Influence-factor analysis and parameter calculation of soil discharge and recovery characteristics under successive impulse currents. IEEE Trans. Power Deliv. 34(2), 514–523 (2018)

    Article  Google Scholar 

  16. X.H. Zhu, Y.X. Luo, W.J. Liu, On the rock-breaking mechanism of plasma channel drilling technology. J. Petrol. Sci. Eng. 194, 107356 (2020)

    Article  CAS  Google Scholar 

  17. J. Guo, X.D. Zhang, B.Y. Wang, S. Zheng, Y.Z. Xie, A three-dimensional direct lightning strike model for lightning protection of the substation. IET Gener. Transm. Distrib. 15(19), 2760–2772 (2021)

    Article  Google Scholar 

  18. R. Ghaffarpour, S. Zamanian, Fractal-based lightning model for investigation of lightning direct strokes to the communication towers. Electr. Eng. 104(4), 2543–2551 (2022)

    Article  Google Scholar 

  19. M. Jamali, M. Niasati, M. Jazaeri, A two-layer soil model for the calculation of electrical parameters of grounding systems under lightning strikes. Electr. Power Compon. Syst. 47(1–2), 181–191 (2019)

    Article  Google Scholar 

  20. B. Zhang, S. Wang, J.P. Wu, Effect of soil moisture on arc discharge in sandy soils under lightning struck. IEEE Lett. Electromagn. Compa. Pract. Appl. 2(4), 111–114 (2020)

    Article  Google Scholar 

  21. T.N. Yang, B. Wang, J.M. Hu, L.Q. Chen, Domain dynamics under ultrafast electric-field pulses. Phys. Rev. Lett. 124(10), 107601 (2020)

    Article  CAS  Google Scholar 

  22. K.P. Sengar, K. Chandrasekaran, Transient behaviour of grounding systems in multilayer soil under lightning strikes. Electr. Eng. 104, 1205–1218 (2022)

    Article  Google Scholar 

  23. X.S. Wen, C. Li, J.H. Chen, X. Tong, H. Mei, G. Zhou, B. Xu, H. Lu, Soil impulse ionisation model based on dynamic changes of electric field. IET Sci. Meas. Technol. 16(5), 283–292 (2022)

    Article  Google Scholar 

  24. C. Miehe, F. Welschinger, M. Hofacker, A phase field model of electromechanical fracture. J. Mech. Phys. Solids. 58(10), 1716–1740 (2010)

    Article  CAS  Google Scholar 

  25. Z.H. Shen, J.J. Wang, J.Y. Jiang, S.X. Huang, Y.H. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1849 (2019)

    Article  Google Scholar 

  26. M. Khondabi, H. Ahmadvand, M. Javanbakht, Revisiting the dielectric breakdown in a polycrystalline ferroelectric: a phase-field simulation study. Adv. Theory Simul. 6(1), 2200314 (2022)

    Article  Google Scholar 

  27. X.H. Zhu, Y.X. Luo, W.J. Liu, On the mechanism of high-voltage pulsed fragmentation from electrical breakdown process. Rock. Mech. Rock. Eng. 54(2), 4593–4616 (2021)

    Article  Google Scholar 

  28. W.K. Feng, P.P. Rao, S. Nimbalkar, Q.S. Chen, J.F. Cui, P.H. Ouyang, The Utilization of a Coupled Electro-Thermal-Mechanical Model of High-Voltage Electric Pulse on Rock Fracture. Materials. 16(4), 1693 (2023)

    Article  CAS  Google Scholar 

  29. International Electrotechnical Commission. IEC Standard 60060-1: high-voltage test techniques—part 1—General definitions and test requirements. Geneva: International Electrotechnical Commission (2010)

  30. Y. Wang, O.I. Zhupanska, Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos. Struct. 132, 1182–1191 (2015)

    Article  Google Scholar 

  31. C. Perera, M. Rahman, M. Fernando, P. Liyanage, V. Cooray, The relationship between current and channel diameter of 30 cm long laboratory sparks. J. Electrostat. 70(6), 512–516 (2012)

    Article  Google Scholar 

  32. Q. Dong, G.S. Wan, Y.L. Guo, L.A. Zhang, X.T. Wei, X.S. Yi, Y.X. Jia, Damage analysis of carbon fiber composites exposed to combined lightning current components D and C. Compos. Sci. Technol. 179(28), 1–9 (2019)

    Article  CAS  Google Scholar 

  33. C. Elmi, J.Z. Chen, D. Goldsby, R. Giere, Mineralogical and compositional features of rock fulgurites: a record of lightning effects on granite. Am. Miner. 102(7), 1470–1481 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The research reported in this manuscript is funded by the National Natural Science Foundation of China (Grant No. 42077435).

Author information

Authors and Affiliations

Authors

Contributions

WF contributed to conceptualization; PO and WF performed formal analysis and investigation; RP done supervision and funding acquisition; PO done software; SN helped in writing—original draft; QC helped in writing—review and editing.

Corresponding author

Correspondence to Weikang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P., Feng, W., Ouyang, P. et al. Numerical Simulation of Pipeline Failure Mechanisms Under Lightning Strikes, Capturing Electric Disruption and Thermal Damage. J Fail. Anal. and Preven. 23, 2065–2074 (2023). https://doi.org/10.1007/s11668-023-01754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01754-0

Keywords

Navigation