Skip to main content
Log in

Failure Analysis of Heat Exchanger Using Eddy Current Testing (ECT)

  • Tools and Techniques
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Shell and tube heat exchangers are widely used in the oil and gas, petrochemical and nuclear power sectors. The most important aspect of the turnaround is the routine testing and inspection of the in-service heat exchanger. Heat exchangers in use are the primary cause of tube flaws such as pitting, corrosion, erosion, fretting corrosion, crevice corrosion, stress corrosion cracking, wear, galvanic corrosion, fatigue cracking, microbiologically influenced corrosion, and so forth. For research, a seamless nickel–iron–chromium alloy-tubed SB 163 (UNS 8810) heat exchanger was taken. The total number of tubes that need to be inspected is 286 tubes with a specification of 19.05 mm OD × 2.11 mm thickness × 5000 mm length. From the different advanced NDT techniques, the eddy current testing (ECT) was chosen for inspection since it has become one of the most popular NDT methods for locating discontinuities in heat exchanger tubes. A standard calibration tube was used to calibrate the system's response and set the sensitivity. During the inspection, the ECT probe was inserted from the below side up to the other end and collected while pulling the probe from the tube. Inspection data were recorded for the length of each tube. All indications were assessed, and defects were categorized as different extents of wall thickness loss after inspection. The inspection report shows how many tubes were found defective and need to be plugged or removed (retubing). From the inspection data (the result of statistics), defects like corrosion, pitting, wall loss, wear, etc., that resulted in notable material loss were identified. Inspection data also summarized where the defects were located (like between the first baffle and the second baffle) and are helpful for further research. After analysis using ECT reports, the defective tubes were categorized according to their defect percentage and location, which helps to do retubing effectively by avoiding the 100% retubing concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Mirzaei, H. Hajabdollahi, H. Fadakar, Multi-objective optimization of shell-and-tube heat exchanger by constructal theory. Appl. Therm. Eng. 125, 9–19 (2017)

    Article  Google Scholar 

  2. F. Rößler, V. Krumova, S. Gewald, A. Bauernfeind, P. Freko, I. Thomas, H.-J. Zander, S. Rehfeldt, H. Klein, Hazard analysis of fixed-tube-sheet shell-and-tube heat exchangers. Chem. Ing. Tech. 94(5), 727–737 (2022)

    Article  Google Scholar 

  3. C. Subramanian, Dissimilar metal weld failure of steam piping in a hydrogen unit of petroleum refinery. Eng. Fail. Anal. 134, 105983 (2022)

    Article  CAS  Google Scholar 

  4. A. Yildiz, M.A. Ersöz, Theoretical and experimental thermodynamic analyses of a chevron type heat exchanger. Renew Sustai Energy Rev. 42, 240–253 (2015)

    Article  Google Scholar 

  5. J.A.W. Gut, R. Fernandes, J.M. Pinto, C.C. Tadini, Thermal model validation of plate heat exchangers with generalized configurations. Chem. Eng. Sci. 59(21), 4591–4600 (2004)

    Article  CAS  Google Scholar 

  6. M.F. Saffiudeen, F.T. Mohammed, A. Syed, A case study on procedure standardization of heat exchanger retubing in KSA oil and gas industries. J. Fail. Anal. Prevent. 20(5), 1451–1455 (2020)

    Article  Google Scholar 

  7. A.A. Abd, M.Q. Kareem, S.Z. Naji, Performance analysis of shell and tube heat exchanger: parametric study. Case Stud. Therm. Eng. 12, 563–568 (2018)

    Article  Google Scholar 

  8. D.T. Thekkuden, A.H.I. Mourad, T. Ramachandran, A.H. Bouzid, R. Kumar, A. Alzamly, Combined effect of tungsten inert gas welding and roller expansion processes on mechanical and metallurgical characteristics of heat exchanger tube-to-tubesheet joints. J. Mater. Res. Technol. 21, 4724–4744 (2022)

    Article  CAS  Google Scholar 

  9. M.F. Saffiudeen, F.T. Mohammed, A. Syed, Comparative study of tube to tubesheet welding qualification on heat exchanger. J. Eng. Appl. Sci. 69(1), 1–14 (2022)

    Article  Google Scholar 

  10. M. Ali, A. Ul-Hamid, L.M. Alhems, A. Saeed, Review of common failures in heat exchangers–part I: mechanical and elevated temperature failures. Eng. Fail. Anal. 109, 104396 (2020)

    Article  Google Scholar 

  11. B.T. Vincent, M.A. Hassan, R.J. Rogers, A probabilistic assessment technique applied to a cracked heat exchanger tube subjected to flow-induced vibration. J. Press. Vessel Technol. 131(3), 031305 (2009)

    Article  Google Scholar 

  12. Yi. Gong, F.-Q. Ma, Y. Xue, C.-S. Jiao, Z.-G. Yang, Failure analysis on leaked titanium tubes of seawater heat exchangers in recirculating cooling water system of coastal nuclear power plant. Eng. Fail. Anal. 101, 172–179 (2019)

    Article  CAS  Google Scholar 

  13. C.R.F. Azevedo, G.S. Alves, Failure analysis of a heat-exchanger serpentine. Eng. Fail. Anal. 12(2), 193–200 (2005)

    Article  CAS  Google Scholar 

  14. V. Kain, K. Chandra, B.P. Sharma, Failure of carbon steel tubes in a fluidized bed combustor. Eng. Fail. Anal. 15(1–2), 182–187 (2008)

    Article  CAS  Google Scholar 

  15. T.-W. Ni, J.-L. Fei, S.-H. Wang, Yi. Gong, Z.-G. Yang, Failure analysis on unexpected perforation of heat exchanger tube in methacrylic acid reboiler of specialty chemical plant. Eng. Fail. Anal. 108, 104267 (2020)

    Article  CAS  Google Scholar 

  16. Y. Gong, C. Yang, C. Yao, Z.-G. Yang, Acidic/caustic alternating corrosion on carbon steel pipes in heat exchanger of ethylene plant. Mater. Corros. 62(10), 967–978 (2011)

    Article  CAS  Google Scholar 

  17. K. Ranjbar, Effect of flow induced corrosion and erosion on failure of a tubular heat exchanger. Mater. Des. 31(1), 613–619 (2010)

    Article  CAS  Google Scholar 

  18. S.-M. Hu, S.-H. Wang, Z.-G. Yang, Failure analysis on unexpected wall thinning of heat-exchange tubes in ammonia evaporators. Case Stud. Eng. Fail. Anal. 3, 52–61 (2015)

    Article  Google Scholar 

  19. C. Subramanian, Localized pitting corrosion of API 5L grade a pipe used in industrial fire water piping applications. Eng. Fail. Anal. 92, 405–417 (2018)

    Article  CAS  Google Scholar 

  20. R. Parrott, Potential hazards from undetected corrosion in complex equipment: a case study of the destructive separation of an offshore heat exchanger. Eng. Fail. Anal. 44, 424–440 (2014)

    Article  CAS  Google Scholar 

  21. W. Faes, S. Lecompte, Z.Y. Ahmed, J. Van Bael, R. Salenbien, K. Verbeken, M. De Paepe, Corrosion and corrosion prevention in heat exchangers. Corros. Rev. 37(2), 131–155 (2019)

    Article  CAS  Google Scholar 

  22. M.P. Schwartz, Four types of heat exchanger failures. ITT Bell & Gosset (1982).

  23. M. Rezaei, Z. Mahidashti, S. Eftekhari, E. Abdi, A corrosion failure analysis of heat exchanger tubes operating in petrochemical refinery. Eng. Fail. Anal. 119, 105011 (2021)

    Article  CAS  Google Scholar 

  24. A. Usman, A.N. Khan, Failure analysis of heat exchanger tubes. Eng. Fail. Anal. 15(1–2), 118–128 (2008)

    Article  CAS  Google Scholar 

  25. H. Peltola, M. Lindgren, Failure analysis of a copper tube in a finned heat exchanger. Eng. Fail. Anal. 51, 83–97 (2015)

    Article  CAS  Google Scholar 

  26. B. Kuźnicka, Erosion–corrosion of heat exchanger tubes. Eng. Fail. Anal. 16(7), 2382–2387 (2009)

    Article  Google Scholar 

  27. X. Yang, M. Liu, Z. Liu, Du. Cuiwei, X. Li, Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units. Eng. Fail. Anal. 116, 104729 (2020)

    Article  CAS  Google Scholar 

  28. J.L. Otegui, P.G. Fazzini, Failure analysis of tube–tubesheet welds in cracked gas heat exchangers. Eng. Fail. Anal. 11(6), 903–913 (2004)

    Article  CAS  Google Scholar 

  29. X. Liu, H. Zhu, Yu. Chenyang, H. Jin, C. Wang, Ou. Guofu, Analysis on the corrosion failure of U-tube heat exchanger in hydrogenation unit. Eng. Fail. Anal. 125, 105448 (2021)

    Article  CAS  Google Scholar 

  30. S. Shahrani, S. Al-Subai, Failure analysis of heat exchanger tubes. J. Fail. Anal. Prev. 14(6), 790–800 (2014)

    Article  Google Scholar 

  31. S.A.J. Jahromi, M.M. AliPour, A. Beirami, Failure analysis of 101-C ammonia plant heat exchanger. Eng. Fail. Anal. 10(4), 405–421 (2003)

    Article  CAS  Google Scholar 

  32. D. Liu, Hu. Junying, Xi. Yuan, Li. Zhou, X. Zhong, Failure analysis and experimental verification on the hydrogen-driven pitting corrosion of heat exchanger tube material. Eng. Fail. Anal. 137, 106283 (2022)

    Article  CAS  Google Scholar 

  33. C. Subramanian, D. Ghosh, D.S. Reddy, D. Ghosh, R. Natarajan, S.P. Velavan, Stress corrosion cracking of U tube heat exchanger used for low pressure steam generation in a hydrogen unit of petroleum refinery. Eng. Fail. Anal. 137, 106245 (2022)

    Article  CAS  Google Scholar 

  34. S. Suwarno, A.J. I’jazurrohman, F.D. Yudanto, V.S. Djanali, Failure analysis of waste heat boiler tubing caused by a high local heat flux. Eng. Fail. Anal. 136, 106147 (2022)

    Article  CAS  Google Scholar 

  35. J.M. Buckley, An introduction to Eddy Current Testing theory and technology. Technical paper eddyc.pdf available from the internet at http://joe.buckley.net/papers, downloaded on Sep 8 (2003).

  36. Q. Li, .Z Zhong, Z. Liang, Y. Liang, Rail inspection meets big data: methods and trends. in 2015 18th International Conference on Network-Based Information Systems, (IEEE, 2015) pp. 302–308.

  37. T. D’orazio, M. Leo, A. Distante, C. Guaragnella, V. Pianese, G. Cavaccini, Automatic ultrasonic inspection for internal defect detection in composite materials. NDT eInt. 41(2), 145–154 (2008)

    Article  Google Scholar 

  38. A. Mohamed, M.S. Hamdi, S. Tahar, A machine learning approach for big data in oil and gas pipelines. in 2015 3rd International Conference on Future Internet of Things and Cloud, (IEEE, 2015) pp. 585–590

  39. D.L. Nidever, J.A. Holtzman, C.A. Prieto, S. Beland, C. Bender, D. Bizyaev, A. Burton et al., The data reduction pipeline for the apache point observatory galactic evolution experiment. Astron. J. 150(6), 173 (2015)

    Article  Google Scholar 

  40. H. Zhang, S. Dong, L. Zhang, The correlation analysis of the big data for pipeline defect. in Pressure Vessels and Piping Conference, vol. 57939, (American Society of Mechanical Engineers, 2017). p. V002T02A015

  41. D.H. Hur, M.S. Choi, D.H. Lee, S.J. Kim, J.H. Han, A case study on detection and sizing of defects in steam generator tubes using eddy current testing. Nucl. Eng. Des. 240(1), 204–208 (2010)

    Article  CAS  Google Scholar 

  42. B. Zheng, Su. Jheng-Wun, Y. Xie, J. Miles, H. Wang, W. Gao, M. Xin, J. Lin, An autonomous robot for shell and tube heat exchanger inspection. J. Field Robot. 39(8), 1165–1177 (2022)

    Article  Google Scholar 

  43. V.A. Golovin, N.V. Pechnikov, S.B. Kapranov et al., Using an eddy-current technique for studying local corrosion and scale formation on the walls of heat-exchanger tubes. Prot. Met. Phys. Chem. Surf. 52, 1197–1204 (2016)

    Article  CAS  Google Scholar 

  44. J.D. Angelo, A. Bennecer, P. Picton, S. Kaczmarczyk, A. Soares, Eddy current analysis of shipped stainless steel heat exchanger bundle. Case Stud. Nondestruct. Test. Eval. 6, 89–93 (2016)

    Article  Google Scholar 

  45. L. Udpa, P. Ramuhalli, J. Benson, S. Udpa, Automated analysis of eddy current signals in steam generator tube inspection. in Proceedings of the 16th WCNDT (2004).

  46. D. Rifai, A.N. Abdalla, K. Ali, R. Razali, Giant magnetoresistance sensors: a review on structures and non-destructive eddy current testing applications. Sensors. 16(3), 298 (2016)

    Article  Google Scholar 

  47. M. Le, Vu. Hong Ha Thi, D. Wang, J. Lee, Development of electromagnetic cylinder-type probe for inspection of heat exchanger tubes. IEEE Trans. Magn. 58(3), 1–9 (2022)

    Article  Google Scholar 

  48. J.S. Côrte, J.M.A. Rebello, M.P. Arenas, G.R. Pereira, Cracks detection in heat exchanger tubes by eddy current testing using computational simulation. Rev. Progr. Quant. Nondestruct. Eval. (2019)

  49. A. Sophian, G. Tian, M. Fan, Pulsed eddy current non-destructive testing andevaluation: a review. Chin. J. Mech. Eng. 30(3), 500–514 (2017)

    Article  Google Scholar 

  50. K.F. Faurschou, P.R. Underhill, J. Morelli, T.W. Krause, Pulsed eddy current probe optimization for steel pipe wall thickness measurement. in AIP Conference Proceedings, vol. 2012 (2019) pp. 1–10

  51. D. Vasic, V. Bilas, D. Ambrus, Pulsed eddy current nondestructive testing of ferromagnetic tubes. IEEE Trans. Instrum. Meas. 53(4), 1289–1294 (2004)

    Article  Google Scholar 

  52. Y. Fu, R. Yu, X. Peng, S. Ren, Investigation of casing inspection through tubing with pulsed eddy current. Nondestrct. Test. Eval. 27(4), 353–374 (2012)

    Article  Google Scholar 

  53. A. M. Elsherief, S. M. Morsy, H. I. Shaaban, "Detection of corrosion in heat exchanger tubing by eddy current testing. (1993).

  54. C. V. Subramanian, A. Joseph, A. S. Ramesh, T. Jayakumar, P. Kalyanasundaram, R. Baldev, Wall thickness measurements of tubes by Internal Rotary Inspection System (IRIS)-a comparative study with metallography. in Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 2. (1996).

  55. A. Movafeghi, M.H. Kargarnovin, H. Soltanianzadeh, K. Edalati, B. Rokrok, A. Kermani, M. Seidi, A radiographic calibration method for eddy current testing of heat exchanger tubes. Insight NonDestruct. Test. Cond. Monit. 46(10), 594–597 (2004)

    Article  Google Scholar 

  56. J. García-Martín, J. Gómez-Gil, E. Vázquez-Sánchez, Non-destructive techniques based on eddy current testing. Sensors. 11(3), 2525–2565 (2011)

    Article  Google Scholar 

  57. D.T. Thekkuden, A.H.I. Mourad, A.H. Bouzid, Failures and leak inspection techniques of tube-to-tubesheet joints: a review. Eng. Fail. Anal. 130, 105798 (2021)

    Article  Google Scholar 

  58. H.M. Sadek, NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations. Insight-Wigston Northampton. 48(3), 181 (2006)

    Google Scholar 

  59. P. Valeh-e-Sheyda, H. Rashidi, Inhibition of corrosion in amine air cooled heat exchanger: experimental and numerical study. Appl. Therm. Eng. 98, 1241–1250 (2016)

    Article  CAS  Google Scholar 

  60. J. Ding, M. Zhang, S. Liu, S. Wang, J. Wang, Inspection method of finned tube and finned heat exchanger. in Pressure Vessels and Piping Conference, vol. 85352, (American Society of Mechanical Engineers, 2021), p. V005T09A005

  61. Birring, A. Eddy current testing vs. ultrasonic IRIS for inspection of heat exchanger tubing. Stainless Steel 91, 28

  62. X. Liu, J. Yang, C. Chen, W. Chen, Application research of eddy current testing in fault detection of a ship’s sab unit. in IOP Conference Series: Materials Science and Engineering, vol. 677, no. 3, (IOP Publishing, 2019) p. 032060

  63. Z. Yu, Fu. Yuewen, L. Jiang, F. Yang, Detection of circumferential cracks in heat exchanger tubes using pulsed eddy current testing. NDT eInt. 121, 102444 (2021)

    Article  CAS  Google Scholar 

  64. F.E. Al-Qadeeb, Tubing inspection using multiple NDT techniques. in MENDT 3rd Middle East NDT Conference and Exhibition. Manama. (Manama: MENDT, 2005)

  65. J.S. Corte, J.M.A. Rebello, M.C.L. Areiza, S.S.M. Tavares, M.D. Araujo, Failure analysis of AISI 321 tubes of heat exchanger. Eng. Fail. Anal. 56, 170–176 (2015)

    Article  CAS  Google Scholar 

  66. K. Shiraishi, M. Izumida, K. Murakami, Estimation of depth and volume for defects by eddy current testing. Electr. Eng. Jpn. 127(4), 29–38 (1999)

    Article  Google Scholar 

  67. T. Takagi, M. Hashimoto, H. Fukutomi, Finite element modeling of eddy current testing of steam generator tube with crack and deposit, in Review of progress in quantitative nondestructive evaluation. (Springer, Boston, 1997), p.263–270

    Chapter  Google Scholar 

  68. Y. Hatsukade, A. Kosugi, N. Ishizaka, S. Okuno, K. Mori, S. Tanaka, SQUID NDE for in situ inspection of copper heat exchanger tubes. Supercond. Sci. Technol. 19(3), S149 (2006)

    Article  CAS  Google Scholar 

  69. A. Pullen, P. Charlton, 2.5 D finite element simulation-eddy current heat exchanger tube inspection using FEMM. e-J. NDT. 20(7), 1435 (2015)

    Google Scholar 

  70. A.N. AbdAlla, M.A. Faraj, F. Samsuri, D. Rifai, K. Ali, Y. Al-Douri, Challenges in improving the performance of eddy current testing. Meas. Control. 52(1–2), 46–64 (2019)

    Article  Google Scholar 

  71. C.S. Angani, H.G. Ramos, A.L. Ribeiro et al., Evaluation of transient eddy current oscillations response for thickness measurement of stainless steel plate. Measurement. 90, 59–63 (2016)

    Article  Google Scholar 

  72. F. Vacher, F. Alves, C. Gilles-Pascaud, Eddy current nondestructive testing with giant magneto-impedance sensor. NDT eInt. 40, 439–442 (2007)

    Article  CAS  Google Scholar 

  73. M.A. Faraj, F. Samsuri, A.N. AbdAlla, Hybrid of eddy current probe based on permanent magnet and GMR sensor. J. Telecomm. Electr. Comp. Eng. 10, 7–11 (2018)

    Google Scholar 

  74. M.F. Saffiudeen, A. Syed, F.T. Mohammed, Failure analysis of heat exchanger using internal rotary inspection system (IRIS). J. Fail. Anal. Prevent. 21(2), 494–498 (2021)

    Article  Google Scholar 

  75. BPVC Section II-Materials-Part A-Ferrous Materials Specifications (vol. 2) ASME BPVC.II.A (2023)

  76. BPVC Section V-Nondestructive Examination, ASME BPVC.V (2023)

  77. ASNT Recommended Practice No. SNT-TC-1A, Personnel Qualification and Certification in Nondestructive Testing (2020)

  78. Standard Practice for Electromagnetic (Eddy Current) Examination of Seamless and Welded Tubular Products, Titanium, Austenitic Stainless Steel and Similar Alloys. ASTM E426-16 (2021). https://doi.org/10.1520/E0426-16R21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fayas Saffiudeen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffiudeen, M.F., Syed, A. & Mohammed, F.T. Failure Analysis of Heat Exchanger Using Eddy Current Testing (ECT). J Fail. Anal. and Preven. 23, 1898–1906 (2023). https://doi.org/10.1007/s11668-023-01746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01746-0

Keywords

Navigation