Skip to main content
Log in

Analysis of Vibratory Stress and Crack Growth of Compressor Blade Under HCF Loading

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The natural frequency and life of the compressor blades of the aero-engine were obtained by the modal and high cycle fatigue (HCF) experiment. Two failure criteria of compressor blades: vibratory stress and fatigue crack growth were investigated through theoretical and simulation techniques. The study found that resonant generates a non-proportional loads history output in the different regions of the compressor blade in the HCF test. The predictions of the crack growth path are compared with the experiment results. The sensitivity of vibratory stress and resonant frequency to crack locations and lengths are researched. The distribution characteristics of stress and crack should be fully understood before to make a more accurate fracture failure analysis and life predictions are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(K_{i}\) :

Stress intensity factor (SIFs) (i = 1, 2, 3)

β :

Crack growth angle

σ :

Normal stress

a :

Length of half crack major axis

ρ :

Material density

A :

Blade cross-sectional area

T :

Tensile force

L :

Blade length

θ :

Blade bending angle

Q :

Shearing force

I :

Moment of inertia

k :

Stiffness coefficient

δ :

Deflection

E :

Elastic modulus

V :

The volume of the ellipsoid

References

  1. D. Mangardich, F. Abrari, Z. Fawaz, Modeling crack growth of an aircraft engine high pressure compressor blade under combined HCF and LCF loading. Eng. Fract. Mech. 214, 474–486 (2019). https://doi.org/10.1016/j.engfracmech.2019.04.028

    Article  Google Scholar 

  2. N.X. Hou, Z.X. Wen, Q.M. Yu, Z.F. Yue, Application of a combined high and low cycle fatigue life model on life prediction of SC blade. Int. J. Fatigue. 31, 616–619 (2009). https://doi.org/10.1016/j.ijfatigue.2008.03.021

    Article  CAS  Google Scholar 

  3. J. Zhang, W.D. Liu, F.L. Liu et al., Analysis on tenon tooth cracks of a second stage high-pressure turbine blade. Eng. Fail. Anal. 141, 106681 (2022). https://doi.org/10.1016/j.engfailanal.2022.106681

    Article  CAS  Google Scholar 

  4. S. Gurgen, M.C. Kus¸han, S.F. Diltemiz. Handbook of materials failure analysis with case studies from the aerospace and automotive industries, (chapter 13: Fatigue failure in aircraft structural components). pp. 266–269, ISBN: 978-0-12-800950-5. (2015)

  5. H. Yan, P.D. Zhong, N.S. Xi, C.H. Tao, A case study of cracks in aero-engine compressor discs. Eng. Fail. Anal. 7, 181–188 (2000)

    Article  CAS  Google Scholar 

  6. B.A. Cowles, High cycle fatigue in aircraft gas turbines: an industry perspective. Int. J. Fract. 80, 147–163 (1996)

    Article  CAS  Google Scholar 

  7. N.J. Lourenco, M.L.A. Graca, L.A.L. Franco et al., Fatigue failure of a compressor blade. Eng. Fail. Anal. 15, 1150–1154 (2008). https://doi.org/10.1016/j.engfailanal.2007.11.006

    Article  CAS  Google Scholar 

  8. A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad et al., Failure analysis of Ti6A14V gas turbine compressor blade. Eng. Fail. Anal. 15, 1052–1064 (2008). https://doi.org/10.1016/j.engfailanal.2007.11.018

    Article  CAS  Google Scholar 

  9. S.Q. Huang, Z.M. Yao, Y.E. Du et al., An equivalent and accelerated life test method for compressor blades under combined loads based on equal fatigue life. in 2020 11th international conference on prognostics and system health management (PHM-2020 Jinan). https://doi.org/10.1109/PHM-Jinan48558.2020.00118

  10. M. Ahmed, H. Ullah, A. Rauf, Fracture mechanics based fatigue life estimation of axial compressor blade, in Proceedings of 2016 13th international Bhurban conference on applied sciences & technology (IBCAST), Islamabad, Pakistan, 12–16 January 2016

  11. H. Lin, H.P. Geng, X.F. Zhou, L. Yu, High Cycle Fatigue Analysis of Third Stage Blade Based on Shroud Gap Effect. in Proceedings of 2016 IEEE international conference on mechatronics and automation August 7–10, Harbin, China. https://doi.org/10.1109/ICMA.2016.7558834

  12. L. Witek, Experimental and numerical crack initiation analysis of the compressor blade working in resonance conditions. Fatigue Aircr. Struct. 1, 134–153 (2011). https://doi.org/10.2478/v10164-010-0045-3

    Article  Google Scholar 

  13. E. Poursaeidi, H. Bakhtiari, Fatigue crack growth simulation in a first stage of compressor blade. Eng. Fail. Anal. 45, 314–325 (2014). https://doi.org/10.1016/j.engfailanal.2014.06.018

    Article  Google Scholar 

  14. A.R. Rao, B.K. Dutta, Vibration analysis for detecting failure of compressor blade. Eng. Fail. Anal. 25, 211–218 (2012). https://doi.org/10.1016/j.engfailanal.2012.05.012

    Article  Google Scholar 

  15. S. Biswas, M.D. Ganeshachar, J. Kumar, et al., Failure analysis of a compressor blade of gas turbine engine. in 1st international conference on structural integrity, ICONS-2014. Procedia Engineering 86 (2014). p 933–939. https://doi.org/10.1016/j.proeng.2014.11.116

  16. V. Infante, M. Freitas, Failure analysis of compressor blades of a helicopter engine. Eng. Fail. Anal. 104, 67–74 (2019). https://doi.org/10.1016/j.engfailanal.2019.05.024

    Article  Google Scholar 

  17. A. Mokaberi, R.D. Haghighi, Y. Abbaszadeh, Fatigue fracture analysis of gas turbine compressor blades. Eng. Fail. Anal. 58, 1–7 (2015). https://doi.org/10.1016/j.engfailanal.2015.08.026

    Article  CAS  Google Scholar 

  18. H.J. Kwon, D.Y. Lee, Y.K. Lee, Failure analysis of blades and wanes of a compressor for a gas turbine engine. Eng. Fail. Anal. 124, 105386 (2022). https://doi.org/10.1016/j.engfailanal.2021.105386

    Article  Google Scholar 

  19. B.Q. Li, H.G. Zhou, J.F. Liu et al., Multiaxial fatigue damage and reliability assessment of aero-engine compressor blade made of TC4 titanium alloy. Aerosp. Sci. Technol. 119, 107107 (2021). https://doi.org/10.1016/j.ast.2021.107107

    Article  Google Scholar 

  20. S. Braut, M. Tevcic, M. Butkovi, Fatigue strength analysis of an axial compressor blade using the modified Locati method. Eng. Fail. Anal. 14, 106655 (2022). https://doi.org/10.1016/j.engfailanal.2022.106655

    Article  CAS  Google Scholar 

  21. S.M. Wu, Z.K. Wang, H.Q. Li et al., Blade crack detection using blade tip timing. IEEE Trans. Instrum. Meas. 70, 6502813 (2021). https://doi.org/10.1109/TIM.2020.3046926

    Article  Google Scholar 

  22. S. Cano, J.A. Rodríguez, J.M. Rodríguez et al., Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue. Eng. Fail. Anal. 97, 579–588 (2019). https://doi.org/10.1016/j.engfailanal.2019.01.015

    Article  CAS  Google Scholar 

  23. M.S. Kotambkar, Exploring vibration based method for crack detection in turbine blade. in 2010 International conference on mechanical and electrical technology (ICMET 2010). 10–12, Sep. 2010, Singapore. https://doi.org/10.1109/ICMET.2010.5598486.

  24. M.S. Hameed, I.A. Manarvi, Using FEM and CFD to locate cracks in compressor blades for non destructive inspections. In 2009 IEEE aerospace conference, 07–14 March 2009. Big Sky. https://doi.org/10.1109/AERO.2009.4839596

  25. P. Tappert, M. Mercadal, A.V. Flotow, The last few minutes prior to a fatigue blade failure in an axial compressor: observations of blade vibration and blade lean. in 2007 IEEE aerospace conference. 03–10 March 2007. Big Sky. https://doi.org/10.1109/AERO.2007.352845

  26. Z.H. Zhao, L.F. Wang, J.H. Zhang et al., Prediction of high-cycle fatigue strength in a Ti-17 alloy blade after foreign object damage. Eng. Fract. Mech. 241, 107385 (2021). https://doi.org/10.1016/j.engfracmech.2020.107385

    Article  Google Scholar 

  27. R. Chen, F.J. Lv, Q. Li, et al., Failure Analysis on foreign object damage of aero-engine compressor blade. in 2009 8th international conference on reliability, maintainability and safety. 20–24 July 2009. https://doi.org/10.1109/ICRMS.2009.5270002

  28. E. Silveira, G. Atxaga, A.M. Irisarri, Failure analysis of a set of compressor blades. Eng. Fail. Anal. 15, 666–674 (2008). https://doi.org/10.1016/j.engfailanal.2007.10.002

    Article  CAS  Google Scholar 

  29. Z.H. Zhao, L.F. Wang, K.N. Lu et al., Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade. Eng. Fail. Anal. 118, 104842 (2020). https://doi.org/10.1016/j.engfailanal.2020.104842

    Article  CAS  Google Scholar 

  30. B.W. Lee, J.J. Suh, H.C. Lee, Investigations of fretting fatigue in aircraft engine compressor blade. Eng. Fail. Anal. 10, 1900–1908 (2011). https://doi.org/10.1016/j.engfailanal.2011.07.021

    Article  CAS  Google Scholar 

  31. R. Citarella, V. Giannella, E. Vivo, FEM-DBEM approach for crack propagation in a low pressure aero-engine turbine vane segment. Theor. Appl. Fract. Mec. 86, 143–152 (2016). https://doi.org/10.1016/j.tafmec.2016.05.004

    Article  Google Scholar 

  32. K.W. Barlow, R. Chandra, Fatigue crack propagation simulation in an aircraft engine fan blade attachment. Int. J. Fatigue. 27, 1661–1668 (2005)

    Article  CAS  Google Scholar 

  33. S. Heidari, A. Zabihollah. Reliability analysis of rotating cracked blade using modal data. in 2017 international conference on mechanical, system and control engineering. 19–21 May 2017. St. Petersburg, Russia. https://doi.org/10.1109/ICMSC.2017.7959447

  34. J. Cheng, S.S. Zhao, Fracture Mechanics. (Science Press, Beijing, 2006)

    Google Scholar 

  35. F. Ergodan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)

    Article  Google Scholar 

  36. FRANC3D v8.1. Reference manual. Developed by the Cornell fracture group. Cornell University. Fracture Analysis Consultants, Inc. www.fracanlysis.Com. Jun. 2022.

  37. L.E. Spievak, P.A. Wawrzynek, A.R. Ingraffea, D.G. Lewicki, Simulating fatigue crack growth in spiral bevel gears. Eng. Fract. Mech. 68, 53–76 (2001). https://doi.org/10.1016/S0013-7944(00)00089-8

    Article  Google Scholar 

  38. S.Z. Yin, Fracture Damage Theory and Application. (Tsinghua University Press, 1992)

    Google Scholar 

  39. E. Poursaeidi, A. Babaei, M.R. MohammadiArhani et al., Effects of natural frequencies on the failure of R1 compressor blades Eng. Fail. Anal. 25(304), 315 (2012). https://doi.org/10.1016/j.engfailanal.2012.05.013

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (Grant No. 52075443), National Science and Technology Major Project (No. J2019-IV-0017-0085)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yu, T., Shang, B. et al. Analysis of Vibratory Stress and Crack Growth of Compressor Blade Under HCF Loading. J Fail. Anal. and Preven. 23, 1326–1343 (2023). https://doi.org/10.1007/s11668-023-01680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01680-1

Keywords

Navigation