Skip to main content
Log in

Investigation of the Effects of Slide Diamond Burnishing Process on the Mechanical Performance of GCr15 Steel

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

To investigate the effect of the slide diamond burnishing process on the mechanical properties of GCR15 steel, an experimental study was carried out. For this purpose, burnished and unburnished specimens have been prepared and compared in fatigue performance, surface roughness, microhardness, and SEM analysis. The burnishing process was carried out at a speed of 560 rpm, a burnishing force of 10 Kgf, a feed rate of 0.074 mm/rev and several passes of 3. Rotary bending fatigue tests were performed on the burnished and unburnished specimens, S–N curves were plotted from a maximum load representing 66% of tensile strength. The findings indicate that the fatigue strength was increased by up to 36% because of slide diamond burnishing compared to the non-burnished case. At lower stress levels, the improvement in fatigue strength is clearly observed. The fatigue curves reveal a slight reduction in the fatigue strength results compared to those reported in the literature, which can be attributed to the specimen's small shoulder fillet value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A% :

Ultimate elongation (%)

f :

Burnishing feed rate (mm.rev1)

n:

Burnishing velocity (rev.min1)

Hv :

Surface Vickers hardness

R:

Fatigue ratio σmin/σmax

i :

Number of burnishing tool passes

σ N :

Fatigue strength

P y :

Burnishing force (Kgf)

N:

Number of cycles

r :

Burnishing ball radius (mm)

σ D :

Endurance limit (MPa)

Ra :

Arithmetic mean roughness (μm)

σ a :

Stress amplitude (MPa)

Ra B :

Burnishing arithmetic mean deviation

SDB:

Slide diamond burnishing

HVB :

Burnishing surface Vickers hardness

BB:

Ball-burnishing

AISI:

American Iron and Steel Institute

M:

Unburnished specimens

Rp 0,2 :

Yield strength (MPa)

SDBS :

Slide diamond burnished specimens

Rm :

Tensile strength (MPa)

SEM:

Scanning electron microscopy

References

  1. J. Maximov, G. Duncheva, A. Anchev, V. Dunchev, J. Capek, A cost-effective optimization approach for improving the fatigue strength of diamond-burnished steel components. J. Braz. Soc. Mech. Sci. Eng. 43(1), 1–13 (2021). https://doi.org/10.1007/s40430-020-02723-6

    Article  CAS  Google Scholar 

  2. H. Hamadache, A. Amirat, K. Chaoui, Effect of diamond ball burnishing on surface characteristics and fatigue strength of XC55 steel. Int. Rev. Mech. Eng. 2(1), 40–48 (2008). https://doi.org/10.15866/irece.v6i6.8201

    Article  Google Scholar 

  3. L.L. De Lacalle, A. Lamikiz, J. Muñoa, J. Sánchez, Quality improvement of ball-end milled sculptured surfaces by ball burnishing. Int J Mach Tool Manu. 45(15), 1659–1668 (2005). https://doi.org/10.1016/j.ijmachtools.2005.03.007

    Article  Google Scholar 

  4. A.S. Robles, J.Á.D. De la Peña, A.D.J.B. García, E.A. Gómez, H.P. Mora, N.S. Robles, The ball burnishing process: state of the art of a developing technology. DYNA. 92(1), 28–33 (2017). https://doi.org/10.6036/7916

    Article  Google Scholar 

  5. H. Hamadache, W. Taamallah, Z. Zahia, Characterization layers hardened burnished steel AISI/SAE 3115. Int. J. Mech. Appl. 4, 13–19 (2014). https://doi.org/10.5923/j.mechanics.20140401.03

    Article  Google Scholar 

  6. Y. Takada, H. Sasahara, Effect of tip shape of frictional stir burnishing tool on processed layer’s hardness, residual stress and surface roughness. Coatings. 8(1), 32 (2018). https://doi.org/10.3390/coatings8010032

    Article  CAS  Google Scholar 

  7. J.T. Maximov, G.V. Duncheva, A.P. Anchev, M.D. Ichkova, Slide burnishing—review and prospects. Int. J. Adv. Manuf. Technol. 104(1), 785–801 (2019). https://doi.org/10.1007/s00170-019-03881-1

    Article  Google Scholar 

  8. J. Kalisz, K. Żak, S. Wojciechowski, M.K. Gupta, G.M. Krolczyk, Technological and tribological aspects of milling-burnishing process of complex surfaces. Tribol. Int. 155, 106770 (2021). https://doi.org/10.1016/j.triboint.2020.106770

    Article  Google Scholar 

  9. S. Świrad, D. Wydrzynski, P. Nieslony, G.M. Królczyk, Influence of hydrostatic burnishing strategy on the surface topography of martensitic steel. Measure. 138, 590–601 (2019). https://doi.org/10.1016/j.triboint.2020.106770

    Article  Google Scholar 

  10. D. Toboła, J. Morgiel, Ł Maj, TEM analysis of surface layer of Ti–6Al–4V ELI alloy after slide burnishing and low-temperature gas nitriding. Appl. Surf. Sci. 515, 145942 (2020). https://doi.org/10.1016/j.apsusc.2020.145942

    Article  CAS  Google Scholar 

  11. A. Rodríguez, L.N. López de Lacalle, A. Celaya, A. Lamikiz, J. Albizuri, Surface improvement of shafts by the deep ball-burnishing technique. Surf. Coat. Technol. 206(11), 2817–2824 (2012). https://doi.org/10.1016/j.surfcoat.2011.11.045

    Article  CAS  Google Scholar 

  12. V. Chomienne, F. Valiorgue, J. Rech, C. Verdu, Influence of ball burnishing on residual stress profile of a 15–5PH stainless steel. CIRP J. Manuf. Sci. Technol. 13, 90–96 (2016). https://doi.org/10.1016/j.cirpj.2015.12.003

    Article  Google Scholar 

  13. R. Jerez-Mesa, G. Fargas, J.J. Roa, J. Llumà, J.A. Travieso-Rodriguez, Superficial effects of ball burnishing on trip steel AISI 301ln sheets. Metals. 11(1), 82 (2021). https://doi.org/10.3390/met11010082

    Article  CAS  Google Scholar 

  14. A.A. García-Granada, G. Gomez-Gras, R. Jerez-Mesa, J.A. Travieso-Rodriguez, G. Reyes, Ball-burnishing effect on deep residual stress on AISI 1038 and AA2017-T4. Mater. Manuf. Processes. 32(11), 1279–1289 (2017). https://doi.org/10.1080/10426914.2017.1317351

    Article  CAS  Google Scholar 

  15. R. Sadeler, M. Akbulut, S. Atasoy, Influence of mechanical (ball burnishing) surface treatment on fatigue behaviour of AISI 1045 steel. Kovove Materialy. 51(1), 31–35 (2013). https://doi.org/10.4149/km_2013_1_31

    Article  CAS  Google Scholar 

  16. R. Avilés, J. Albizuri, A. Rodríguez, L.L. De Lacalle, Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. Int. J. Fatigue. 55, 230–244 (2013). https://doi.org/10.1016/j.ijfatigue.2013.06.024

    Article  CAS  Google Scholar 

  17. J.A. Travieso-Rodríguez, R. Jerez-Mesa, G. Gómez-Gras, J. Llumà-Fuentes, O. Casadesús-Farràs, M. Madueño-Guerrero, Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038. J. Market. Res. 8(6), 5639–5646 (2019). https://doi.org/10.1016/j.jmrt.2019.09.032

    Article  CAS  Google Scholar 

  18. N. Jouini, P. Revel, G. Thoquenne, Investigation of surface integrity induced by various finishing processes of AISI 52100 bearing rings. Materials. 15(10), 3710 (2022). https://doi.org/10.3390/ma15103710

    Article  CAS  Google Scholar 

  19. A. Panda, A.K. Sahoo, R. Kumar, R.K. Das, A review on machinability aspects for AISI 52100 bearing steel. Mater. Today Proc. 23, 617–621 (2020). https://doi.org/10.1016/j.matpr.2019.05.422

    Article  CAS  Google Scholar 

  20. C.D. Aquino, L.G. Rodrigues, J.M. Branco, W.J.S. Gomes, Statistical correlation investigation of a single-doweled timber-to-timber joint. Eng. Struct. 269, 114810 (2022). https://doi.org/10.1016/j.engstruct.2022.114810

    Article  Google Scholar 

  21. L. Luca, S. Neagu-Ventzel, I. Marinescu, Effects of working parameters on surface finish in ball-burnishing of hardened steels. Precis. Eng. 29(2), 253–256 (2005). https://doi.org/10.1016/j.precisioneng.2004.02.002

    Article  Google Scholar 

  22. N. Loh, S. Tam, Effects of ball burnishing parameters on surface finish—a literature survey and discussion. Precis. Eng. 10(4), 215–220 (1988). https://doi.org/10.1016/0141-6359(88)90056-6

    Article  Google Scholar 

  23. P. Puerto, R. Fernández, J. Madariaga, J. Arana, I. Gallego, Evolution of surface roughness in grinding and its relationship with the dressing parameters and the radial wear. Procedia Eng. 63, 174–182 (2013). https://doi.org/10.1016/j.proeng.2013.08.181

    Article  Google Scholar 

  24. R. Fernández, A. Iriarte, P. Puerto, I. Gallego, P. Arrazola, Analysis of the behavior of grinding wheels in surface grinding. AIP Conf. Proc. Am. Inst. Phys. 1, 374–382 (2012). https://doi.org/10.1063/1.4707586

    Article  Google Scholar 

  25. E. Yagyaev, Stabilization of processing quality parameters at cylindrical external grinding by control of the rotational frequency of the grinding wheel. Mater. Today Proc. 38, 1882–1885 (2021). https://doi.org/10.1016/j.matpr.2020.08.569

    Article  Google Scholar 

  26. F. Jasso Lucio The Effects of Roller Burnishing Parameters Upon Surface Properties of AISI 52100 Bearing Steel (60HRC). A Finite Element Analysis-Edición Única.

  27. M. Bourebia, L. Laouar, H. Hamadache, S. Dominiak, Improvement of surface finish by ball burnishing: approach by fractal dimension. Surf. Eng. 33(4), 255–262 (2017). https://doi.org/10.1080/02670844.2016.1232778

    Article  CAS  Google Scholar 

  28. R. McClung, A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract. Eng. Mater. Struct. 30(3), 173–205 (2007). https://doi.org/10.1111/j.1460-2695.2007.01102.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouahiba Taamallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taamallah, O., Hamadache, H., Mokas, N. et al. Investigation of the Effects of Slide Diamond Burnishing Process on the Mechanical Performance of GCr15 Steel. J Fail. Anal. and Preven. 23, 1101–1113 (2023). https://doi.org/10.1007/s11668-023-01652-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01652-5

Keywords

Navigation