Skip to main content
Log in

Failure Analysis of the Handle of Stainless Steel Cathode Blank in Copper Electroforming Process: Cu Core Connection to 316L Stainless Steel Sheath

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Copper electroforming units around the world use 316L stainless steel (SS) cathode blanks. Cathodes play an essential role in the operating costs of high-purity copper production. Khatoonabad copper refinery asked the authors to investigate the cause of the failure of the handle of this cathode blank and to provide an operational solution. Corrosion of the copper joint to the steel handle was observed as a result of electrolyte penetration from the sides of the handle and the groove between the copper core and the steel sheath. To solve the problem at the source, using GTAW and NiCrMo3 filler, the empty space between the Cu core and the outer 316L SS sheath was filled. Afterward, metallographic analysis, scanning electron microscope equipped with energy scattered X-ray spectroscopy, X-ray diffraction analysis, microhardness and potentiostat analysis in industrial electrolytes were used to characterize the weld metal. According to laboratory results, the weld metal is composed of two phases combinations of high entropy alloys (FCC and BCC) with a higher protective efficiency of about 68.79% respect to Cu and 97.83% respect to 316L SS. In laboratory scale, the metallic properties of the weld metal and acceptable coherency with the base metals as well as the microhardness between Cu and 316L SS could effectively prevent electrolyte penetration into the groove and ensure stability against thermal shock resulting from short circuiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.G. Shiri, M. Nazar, M. Sharifitabar, M.S. Afarani, Gas tungsten arc welding of CP-copper to 30zadeh4 stainless steel using different filler materials. Trans. Nonferrous Met. Soc. 22(12), 2937–2942 (2012)

    Article  CAS  Google Scholar 

  2. N. Thomas, A. Mathew, K. George, N. Thomas, S. Thampi, A. Biradar, M. Rijesh, Microstructural and mechanical properties evaluation of tungsten inert gas-welded 316 stainless steel and pure copper joint. Metallogr. Microstruct. Anal. 9(5), 678–684 (2020)

    Article  Google Scholar 

  3. N. Mansouri, G.R. Khayati, B. Mohammad Hasani Zade, S.M.J. Khorasani, R. Kafi Hernashki, A new feature extraction technique based on improved owl search algorithm: a case study in copper electrorefining plant. Neural. Comput. Appl. 34(10), 7749–7814 (2022)

    Article  Google Scholar 

  4. C.C. Chang, L.H. Wu, C. Shueh, C.K. Chan, I.C. Shen, C.K. Kuan, Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel. Int. J. Adv. Manuf. Technol. 91(5), 2217–2224 (2017)

    Article  Google Scholar 

  5. G.R. Joshi, V.J. Badheka, Metallographic and microstructure analysis of gas tungsten arc-welded bimetallic copper-to-stainless steel joints. Metallogr. Microstruct. 9(2), 180–193 (2020)

    Article  CAS  Google Scholar 

  6. M. Velu, S. Bhat, Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials. Mater. Des. 47, 793–809 (2013)

    Article  CAS  Google Scholar 

  7. A. Mannucci, I. Tomashchuk, V. Vignal, P. Sallamand, M. Duband, Parametric study of laser welding of copper to austenitic stainless steel. Procedia CIRP. 74, 450–455 (2018)

    Article  Google Scholar 

  8. S. Kou, Welding metallurgy. NJ USA. 431(446), 223–225 (2003)

    Google Scholar 

  9. A. Munitz, R. Abbaschian, Liquid separation in Cu–Co and Cu–Co–Fe alloys solidified at high cooling rates. J. Mater. Sci. 33, 3639–3649 (1998)

    Article  CAS  Google Scholar 

  10. W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys. Sci. China Mater. 61(1), 2–22 (2018)

    Article  CAS  Google Scholar 

  11. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  12. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013)

    Article  CAS  Google Scholar 

  13. Z. Shojaei, G.R. Khayati, E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys. Int. J. Miner. Metall. Mater. 29(9), 1683–1696 (2022)

    Article  CAS  Google Scholar 

  14. L. Chen, X. Hao, Y. Wang, X. Zhang, H. Liu, First-principles calculation of the effect of Ti content on the structure and properties of TiVNbMo refractory high-entropy alloy. Mater. Res. Express. 7(10), 106516 (2020)

    Article  CAS  Google Scholar 

  15. S.J. Mole, X. Zhou, R. Liu, Density functional theory (DFT) study of enthalpy of formation. 1. Consistency of DFT energies and atom equivalents for converting DFT energies into enthalpies of formation. J Phys. Chem. 100(35), 14665–14671 (1996)

    Article  CAS  Google Scholar 

  16. G.Y. Gan, L. Ma, D.M. Luo, S. Jiang, B.Y. Tang, Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0. 25Ti0. 25Zr0. 25Sc0. 25-xAlx from first-principles investigation. Phys. B Condens. Matter. 593, 412272 (2020)

    Article  CAS  Google Scholar 

  17. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012)

    Article  CAS  Google Scholar 

  18. S.Y. Liu, S. Zhang, S. Liu, D.J. Li, Y. Li, S. Wang, Phase stability, mechanical properties and melting points of high-entropy quaternary metal carbides from first-principles. J. Eur. Ceram. Soc. 41(13), 6267–6274 (2021)

    Article  CAS  Google Scholar 

  19. M. Shokouhfar, C. Dehghanian, A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance. Appl. Surf. Sci. 257, 2617–2624 (2011). https://doi.org/10.1016/j.apsusc.2010.10.032

    Article  CAS  Google Scholar 

  20. M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, Preparation of ceramic coating on Ti sustrbate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 258, 2416–2423 (2012). https://doi.org/10.1016/j.apsusc.2011.10.064

    Article  CAS  Google Scholar 

  21. G. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, S. Zhang, Characterization and corrosion behaviors of TiN/TiAlN multilayer coatings by ion source enhanced hybrid arc ion plating. Surf. Coat. Technol. 366, 355–365 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.027

    Article  CAS  Google Scholar 

  22. Z. Brytan, J. Niagaj, L. Reiman, Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441. Appl. Surf. Sci. 388, 160–168 (2016). https://doi.org/10.1016/j.apsusc.2016.01.260

    Article  CAS  Google Scholar 

  23. S. Arjmand, G.H. Akbari, G.R. Khayati, Fabrication of in-situ Ni/Ni3Ti-NiTi-Fe2Ti-βCr2Ti reinforced Ti-based composite coating using tungsten inert gas processing. J. Alloys Compd. 873, 159697 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rostamzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamzadeh, F., Khayati, G.R., Khorasani, S.M.J. et al. Failure Analysis of the Handle of Stainless Steel Cathode Blank in Copper Electroforming Process: Cu Core Connection to 316L Stainless Steel Sheath. J Fail. Anal. and Preven. 23, 1026–1037 (2023). https://doi.org/10.1007/s11668-023-01641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01641-8

Keywords

Navigation