Skip to main content

Advertisement

Log in

Consequence Analysis of Most Hazardous Initiating Event in Electrical Energy Storage Systems Using Event Tree Analysis

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The grid energy storage systems, particularly renewable energy storage, are increasingly becoming more common. Thus, identifying and evaluating possible hazards and consequences are of utmost priority. This paper focuses on five energy storage systems, compressed air energy storage system, liquid air energy storage system, thermal energy storage in concentrated solar power plant, lithium-ion battery and flywheel energy storage system. The description of these systems is followed by a fundamental event tree analysis of a single most hazardous initiating event within the system. The installed safety barriers are assumed for event tree analysis based on relevant data and consequences analyzed. The failure on-demand and reliability are the two pathways for each installed safety barrier system. The analysis provides insight into worst-case scenarios and guides designers in considering the inherently safer design and redundant safety installations. However, further research is needed for accurate probabilistic calculation results based on actual failure on-demand rates obtained from industry-specific data of these instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. U. Shahzad, The need for renewable energy sources. Energy. 2, 16–18 (2012)

    Google Scholar 

  2. R. L. Ottinger, R. Williams (2002) “Renewable energy sources for development,” Environ. Law, pp. 331–368

  3. R. Wüstenhagen, M. Wolsink, M.J. Bürer, Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy. 35(5), 2683–2691 (2007)

    Article  Google Scholar 

  4. Y. Atalay, F. Biermann, A. Kalfagianni, Adoption of renewable energy technologies in oil-rich countries: explaining policy variation in the Gulf cooperation council states. Renew. Energy. 85, 206–214 (2016)

    Article  Google Scholar 

  5. B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy. 76, 375–380 (2015)

    Article  Google Scholar 

  6. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50 (2019). https://doi.org/10.1016/J.ESR.2019.01.006

    Article  Google Scholar 

  7. M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75(November), 1187–1197 (2017). https://doi.org/10.1016/j.rser.2016.11.102

    Article  Google Scholar 

  8. “Homepage - U.S. Energy Information Administration (EIA).” https://www.eia.gov/ (accessed May 24, 2022).

  9. “Electrical Energy Storage - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/materials-science/electrical-energy-storage (accessed May 24, 2022)

  10. “International Energy Outlook Consumption - Liquid fuels remain the largest energy source in the Reference case, but renewable energy use grows to nearly the same level - U.S. Energy Information Administration (EIA).” https://www.eia.gov/outlooks/ieo/consumption/sub-topic-01.php (accessed May 24, 2022).

  11. “Energy Storage – Analysis - IEA.”

  12. M.T. Lawder et al., Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc. IEEE. 102(6), 1014–1030 (2014). https://doi.org/10.1109/JPROC.2014.2317451

    Article  Google Scholar 

  13. M. Kleinberg et al., Energy storage valuation under different storage forms and functions in transmission and distribution applications. Proc. IEEE. 102(7), 1073–1083 (2014). https://doi.org/10.1109/JPROC.2014.2324995

    Article  Google Scholar 

  14. F. Rahman, S. Rehman, M.A. Abdul-Majeed, Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew. Sustain. Energy Rev. 16(1), 274–283 (2012). https://doi.org/10.1016/j.rser.2011.07.153

    Article  CAS  Google Scholar 

  15. K. Zaghib, A. Mauger, C.M. Julien, Rechargeable lithium batteries for energy storage in smart grids. (Elsevier, Armsterdam, 2015)

    Book  Google Scholar 

  16. T. Chen et al., Applications of lithium-ion batteries in grid-scale energy storage systems. Trans. Tianjin Univ. 26(3), 208–217 (2020). https://doi.org/10.1007/s12209-020-00236-w

    Article  Google Scholar 

  17. D. Rosewater, A. Williams, Analyzing system safety in lithium-ion grid energy storage. J. Power Sour. 300, 460–471 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.068

    Article  CAS  Google Scholar 

  18. X. Li, A. Palazzolo, A review of flywheel energy storage systems: state of the art and opportunities. J. Energy Storage. (2021). https://doi.org/10.1016/j.est.2021.103576

    Article  Google Scholar 

  19. G. Newsom, E. G. Brown, “Flywheel Systems for Utility Scale Energy Storage A Transformative Flywheel Project for Commercial Readiness California Energy Commission,” no. January, 2019.

  20. M.E. Amiryar, K.R. Pullen, A review of flywheel energy storage system technologies and their applications. Appl Sci. (2017). https://doi.org/10.3390/app7030286

    Article  Google Scholar 

  21. A.G. Olabi, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Alami, Compressed air energy storage systems: components and operating parameters – A review. J. Energy Storage. 34, 102000 (2021). https://doi.org/10.1016/j.est.2020.102000

    Article  Google Scholar 

  22. X. Wen, D. Yang, J. Zhong, T. Feng, X. Li, Research on recovery and utilization of waste heat in advanced compressed air energy storage system. Energy Rep. 8, 1436–1445 (2022). https://doi.org/10.1016/j.egyr.2022.02.082

    Article  Google Scholar 

  23. S. Rajput, N. Sabharwal, A. Singh, B. Shingan, B.P. Yadav, City gas distribution incident analysis in India using Pareto principle: a comprehensive analysis. J. Fail. Anal. Prev. (2022). https://doi.org/10.1007/s11668-022-01422-9

    Article  Google Scholar 

  24. S. Huang, A. Khajepour, A new adiabatic compressed air energy storage system based on a novel compression strategy. Energy. 242, 122883 (2022). https://doi.org/10.1016/j.energy.2021.122883

    Article  Google Scholar 

  25. J.H. Park, J.Y. Heo, J.I. Lee, Techno-economic study of nuclear integrated liquid air energy storage system. Energy Convers. Manag. 251, 114937 (2022). https://doi.org/10.1016/j.enconman.2021.114937

    Article  Google Scholar 

  26. C. Lu, Q. He, S. Cui, X. Shi, D. Du, W. Liu, Evaluation of operation safety of energy release process of liquefied air energy storage system. Energy. 235, 121403 (2021). https://doi.org/10.1016/j.energy.2021.121403

    Article  Google Scholar 

  27. N.B. Desai, M.E. Mondejar, F. Haglind, Techno-economic analysis of two-tank and packed-bed rock thermal energy storages for foil-based concentrating solar collector driven cogeneration plants. Renew. Energy. 186, 814–830 (2022). https://doi.org/10.1016/j.renene.2022.01.043

    Article  CAS  Google Scholar 

  28. A. Calderón, C. Barreneche, A.I. Fernández, M. Segarra, Thermal cycling test of solid particles to be used in concentrating solar power plants. Sol. Energy Mater. Sol. Cells. 222, 110936 (2021). https://doi.org/10.1016/j.solmat.2020.110936

    Article  CAS  Google Scholar 

  29. B. Hoffschmidt et al., “3.18 - Concentrating Solar Power,” T. M. B. T.-C. R. E. (Second E. Letcher, Ed. Oxford: Elsevier, 2022, pp. 670–724.

  30. “Hazard and Risk: OSH Answers.” https://www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html (accessed May 24, 2022).

  31. B.K. Rout, B.K. Sikdar, Hazard identification, risk assessment, and control measures as an effective tool of occupational health assessment of hazardous process in an iron ore pelletizing industry. Indian J. Occup. Environ. Med. 21(2), 56–76 (2017). https://doi.org/10.4103/ijoem.IJOEM_19_16

    Article  CAS  Google Scholar 

  32. E.S. Hong, I.M. Lee, H.S. Shin, S.W. Nam, J.S. Kong, Quantitative risk evaluation based on event tree analysis technique: Application to the design of shield TBM. Tunn. Undergr. Sp. Technol. 24(3), 269–277 (2009). https://doi.org/10.1016/J.TUST.2008.09.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshi Kunwar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Kumar, R.S. & Pusti, A. Consequence Analysis of Most Hazardous Initiating Event in Electrical Energy Storage Systems Using Event Tree Analysis. J Fail. Anal. and Preven. 22, 1646–1656 (2022). https://doi.org/10.1007/s11668-022-01464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01464-z

Keywords

Navigation