Skip to main content

Passenger Cars Wheel Performance Test Simulation for Service Life Evaluation: A Review

Abstract

This paper focuses on reviewing publications related to wheel performance tests and simulation of these tests using finite element analysis to evaluate the service life. Publications from the last five decades are studied. A brief introduction on the evolution of wheel performance tests and their importance is discussed. Developments related to experiments and finite element analysis performed by considering material and manufacturing aspects are summarized. Performance tests and simulations performed using different methodologies and adapted optimization procedures are presented to provide readers with a quick overview of past and recent trends in the wheel industry. Different statistical approaches to validate the wheel's reliability to withstand the service loads are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. J. Kinstler, The science and methodology of SAE wheel fatigue test specifications. SAE 2005-01-1826 (2005)

  2. SAE J328, Wheels-passenger car and light truck performance requirements and test procedures. Warrendale, (PA): Society of Automotive Engineers, Inc. (2001)

  3. ISO 7141, Road vehicles-light alloy wheels-impact test, ITD, (2005)

  4. G. Krause, F. Mahnig, A comprehensive method for wheel testing by stress analysis. SAE 760042 (1976)

  5. ISO 3894, Road vehicles—wheels/rims for commercial vehicles—test methods (2015)

  6. ISO 3006. Road vehicles-passenger car wheels-test methods (1976)

  7. JIS D 4103-1989, Automobile parts-disc wheels-performance requirements and margins, Society of Automobile Engineering of Japan, Established in 1984 and revised in 1989 (1989)

  8. SAE J2562, Biaxial wheel fatigue test (2005)

  9. P. Ramamurthy Raju, B. Satyanarayana, K. Ramji, K. Suresh Babu, Evaluation of fatigue life of aluminum alloy wheels under radial loads. Eng. Fail. Anal. 14, 791–800 (2007). https://doi.org/10.1016/j.engfailanal.2006.11.028

    CAS  Article  Google Scholar 

  10. P. Ramamurthy Raju, B. Satyanarayana, K. Ramji, K. Suresh Babu, Evaluation of fatigue life of aluminum alloy wheels under bending loads. Fatigue Fract. Eng. Mater. Struct. 32, 119–126 (2008). https://doi.org/10.1111/j.1460-2695.2008.01316.x

    CAS  Article  Google Scholar 

  11. P.R.M. Raju, S. Rajesh, B. Satyanarayana, K. Ramji, Evaluation of stress life of aluminum alloy using reliability based approach. Int. J. Precis. Eng. Manuf. 13, 395–400 (2012). https://doi.org/10.1007/s12541-012-0050-2

    Article  Google Scholar 

  12. P.C. Gope, Determination of sample size for estimation of fatigue life by using weibull or log-normal distribution. Int. J. Fatigue. 21, 745–752 (1999)

    Article  Google Scholar 

  13. P.C. Chandra, Determination of minimumnumber of specimens in S-N testing. J. Eng. Mater. Technol. 24, 421–427 (2002). https://doi.org/10.1115/1.1417486

    Article  Google Scholar 

  14. P. Ramamurty Raju, B. Satyanarayana, K. Ramji, Sample size determination for development of S-N curve of A356.2–T6 aluminum alloy. Struct. Durab. Health Monit. 4(3), 161–171 (2011)

    Google Scholar 

  15. C.M. Sonsino, Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int. J. Fatigue. (2007). https://doi.org/10.14419/ijet.v9i4.31206

    Article  Google Scholar 

  16. I. Marines, X. Bin, C. Bathias, An understanding of very high cycle fatigue of metals. Int. J. Fatigue. 25, 1101–1107 (2003). https://doi.org/10.1016/S0142-1123(03)00147-6

    Article  Google Scholar 

  17. C.M. Sonsino, K. Dieterich, Fatigue design with cast magnesium alloys under constant and variable amplitude loading. Int. J. Fatigue. 28, 183–193 (2006). https://doi.org/10.1016/j.ijfatigue.2005.06.043

    CAS  Article  Google Scholar 

  18. G. Fischer, V. Grubisic, Cast aluminum wheels for trucks and buses–testing and evaluation. SAE 841705 (1984)

  19. V. Grubisic, Criteria and methodology for lightweight design of vehicle components subjected to random loads. SAE 850367 (1985)

  20. R. Ridha, Finite element stress analysis of automotive wheels. SAE Tech. Paper 760085 (1976)

  21. M. Riesner, R.I. DeVries, Finite element analysis and structural optimization of vehicle wheels. SAE 830133 (1983)

  22. M. Riesner, M. P. Zebrowski, R. J. Gavalier, Computer simulation of wheel impact test. SAE 860829 (1986)

  23. K. Morita, M. Kawashima, Finite element stress analysis of a car wheel. Sumitomo Metals. 39(3), 245–263 (1987)

    Google Scholar 

  24. V. Grubisic, G. Fischer, M. Heinritz, Design optimization of forged wheel hubs for commercial vehicles. SAE 841706 (1984)

  25. A. Ceyhan, M. Duruş, C. Akarsu, R. Aydın, A. Aray, G. Hatık et al., Wheel hub fatigue performance under non-constant rotational loading and comparison to eurocycle test. Procedia Eng. 101, 77–84 (2015). https://doi.org/10.1016/j.proeng.2015.02.011

    Article  Google Scholar 

  26. O. Ehl, A. Heinrietz, P. Hasselberg, Adapted fatigue calculation for new lightweight designs of rotating suspension components. SAE 2006-01-3512 (2006)

  27. N. Hägele, C.M. Sonsino, Structural durability of forged automotive aluminium chassis components submitted to spectrum loading and salt-corrosion by the example of a tension strut. Procedia Eng. 10, 330–339 (2011). https://doi.org/10.1016/j.proeng.2017.04.225

    Article  Google Scholar 

  28. G. Fischer, W. Hasenmaier, V.V. Grubisic, proof of wheel fasteners by multiaxial test in the biaxial wheel test rig. SAE 1999-01-0781 (1991)

  29. L. Marsavina, F. Iacoviello, L. Dan Pirvulescu, V. Di Cocco, L. Rusu, Engineering prediction of fatigue strength for AM50 magnesium alloys. Int. J. Fatigue. (2019). https://doi.org/10.1016/j.ijfatigue.2019.05.028

    Article  Google Scholar 

  30. U. Bawaskar, P. Awasare, Investigation of fatigue life of wheels in commercial vehicles. SAE Int. J. Commer. Veh. 11(4), 215–221 (2018). https://doi.org/10.4271/02-11-04-0017

    Article  Google Scholar 

  31. R.R.V. Neves, G.B. Micheli, M. Alves, An experimental and numerical investigation on tyre impact. Int. J. Impact Eng. 37, 685–693 (2010). https://doi.org/10.1016/j.ijimpeng.2009.10.001

    Article  Google Scholar 

  32. C.M. Sonsino, A. Berg-Pollack, V. Grubisic, Structural durability proof of automotive aluminium safety components—present state of the art. SAE 2005-01-0800 (2005)

  33. C.M. Sonsino, R. Franz, Multiaxial fatigue of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0.3 T6) for automotive safety components under constant and variable amplitude loading. Frattura Integr. Strutt. 10(37), 200–206 (2016). https://doi.org/10.3221/IGF-ESIS.37.26

    Article  Google Scholar 

  34. S. OnoriodeIgbudu, D. AbimbolaFadare, Comparison of loading functions in the modelling of automobile aluminium alloy wheel under static radial load. J. Appl. Sci. 5, 403–413 (2015). https://doi.org/10.4236/ojapps.2015.57040

    Article  Google Scholar 

  35. J. Stearns, T.S. Srivatsan, X. Gao, A. Prahash, P.C. Lam, Analysis of stress and strain distribution in a vehicle wheel: finite element analysis versus the experimental method. J. Strain Anal. Eng. Des. (2005). https://doi.org/10.1243/030932405X30786

    Article  Google Scholar 

  36. J. Stearns, An investigation of stress and displacement distribution in a aluminum alloy wheel, Dissertation, University of Akron (2000)

  37. J. Stearns, X. Gao, T.S. Srivatsan, P.C. Lam, The mechanical response of a rotating wheel: influence of inflation pressure and radial loads. Int. J. Veh. Des. 53, 3 (2010). https://doi.org/10.1504/IJVD.2010.033828

    Article  Google Scholar 

  38. D.A. Fadare, O.O. Odebunmi, S.O. Igbudu, Finite element modeling of an aluminum alloy automobile rim under static load. Ife J. Technol. 20, 75–80 (2011)

    Google Scholar 

  39. Y. Morita, H. Kawashima, K. Ishihara, Induced stress evaluation of automotive steel road wheel during endurance tests. Sumitomo Metals. 41, 27–34 (1989)

    Google Scholar 

  40. J. Stearns, T.S. Srivatsan, A. Prakash, P.C, Modeling the mechanical response of an aluminum alloy automotive rim. Mater. Sci. Eng. A. 366, 262–268 (2004)

    Article  Google Scholar 

  41. J.D. Walter, R.K. Kiminecz, Bead contact pressure measurements at the Tire-Rim interface (No. 750458). SAE Technical Paper (1975)

  42. J. Stearns, T.S. Srivatsan, X. Gao, P.C. Lam, Understanding the influence of pressure and radial loads on stress and displacement response of a rotating body. The automobile wheel. Int. J. Rotat. Mach. (2006). https://doi.org/10.1155/IJRM/2006/60193

    Article  Google Scholar 

  43. R. Muthuraj, R. Badrinarayanan, T. Sundararajan, Improvement in the wheel design using realistic loading conditions—FEA and experimental stress comparison. SAE International 2011-28-0106 (2011)

  44. C.P. de Carvalho, H.J.C. Voorwald, C.E. Lopes, Automotive wheels—an approach for structural analysis and fatigue life prediction. SAE 2001-01-4053 (2001)

  45. L. Cheng, R. Nianzu, Y. Qingsong, C. Chao, T. Cheng, L. Zhengguo, Stress state measurement and result analysis of car wheels. IOP Conf. Ser.: Mater. Sci. Eng. 784, 012021 (2020). https://doi.org/10.1088/1757-899X/784/1/012021

    Article  Google Scholar 

  46. R. Muthuraj, E. Vignesh, C. Kannan, T. Sundararajan, Challenges in weight reduction and fatigue life enhancement in wheel design. SAE Int. (2013). https://doi.org/10.4271/2013-01-2900

    Article  Google Scholar 

  47. M. Ramasamy, E. Vignesh, S. Thiyagarajan, The forged hybrid wheel for commercial vehicles, a robust design for augmented product service and performance. SAE Tech. Paper. (2015). https://doi.org/10.4271/2015-26-0068

    Article  Google Scholar 

  48. P.Z. JinMeng, Q. Ji, Z. Liu, Radial fatigue analysis method of steel hub based on partitioned seam weld model and a new pressure distribution regulation. Mater. Des. 47, 115–124 (2013). https://doi.org/10.1016/j.matdes.2012.12.017

    CAS  Article  Google Scholar 

  49. J. Neugebauer, V. Grubisic, D.O. Stalnaker, T.S. Fleischman, Analysis of tire loads ad deformations under operational conditions (No. 880578). SAE (1988)

  50. A. Rupp, V.V. Grubisic, Reliable determination of multi-axial road loads and tire deformations on buses and heavy trucks for the design of proof out (No. 973189). SAE (1997)

  51. M.K. Billal, T. Oery, R.T. Sankaran, A.S. Nesarikar, Simulation and test correlation of wheel radial fatigue test. SAE International 2013-01-1198. https://doi.org/10.4271/2013-01-1198

  52. Wyznaczaniesztywnościkierunkowychoponpojazdó, Determination of directional stiffnesses of vehicles’ tires under a static load operation. Maint. Reliab. 16(1), 66–72 (2014)

  53. E. Tonuk, Y. SamimUnlusoy, Prediction of automobile tire cornering force characteristics by finite element modeling and analysis. Compos. Struct. 79, 1219–1232 (2001)

    Article  Google Scholar 

  54. J.M. Conradie, P.S. Els, P.S. Heyns, Finite element modelling of off-road tyres for radial tyre model parameterization. Proc. Inst. Mech. Eng., Part D: J. Autom. Eng. 230(4), 564–578 (2016). https://doi.org/10.1177/0954407015590018

    Article  Google Scholar 

  55. R. Heim, I. Krause, S. Weingaertner, Runflat-technology and its impact on design and durability of wheels. SAE 2007–01–1532 (2007)

  56. A.N. Rupp, A. Heinrietz, Simulation of the experiemtal proof out of wheels and hubs. SAE 2002–01–1202. (2002)

  57. M. Firat, R. Kozan, O. Murat Ozsoy, H. Mete, Numerical modeling and simulation of wheel radial fatigue tests. Eng. Fail. Anal. 16, 1533–1541 (2009)

    CAS  Article  Google Scholar 

  58. M.M. Topac, S. Ercan, N.S. Kuralay, Fatigue life prediction of a heavy vehicle steel wheel under radial loads by using finite element analysis. Eng. Fail. Anal. 20, 67–69 (2012). https://doi.org/10.1016/j.engfailanal.2011.10.007

    CAS  Article  Google Scholar 

  59. C.G. He, Y.Z. Chen, J. Guo, Q.Y. Liu, W.J. Wang, Investigation on fatigue cracks propagation characteristics of wheel materials under the bending moment condition. Wear. 376–377, 1901–1911 (2017). https://doi.org/10.1016/j.wear.2017.01.026

    CAS  Article  Google Scholar 

  60. A. Kara, O. Daysal, Simulation of inner rim compression test of aluminum alloy wheels. Key Eng. Mater. ISSN. 774, 379–384 (2018). https://doi.org/10.4028/www.scientific.net/KEM.774.379

    Article  Google Scholar 

  61. F. Bjørheim, S.C. Siriwardane, D. Pavlou, A review of fatigue damage detection and measurement techniques. Int. J. Fatigue. 154, 106556 (2022). https://doi.org/10.1016/j.ijfatigue.2021.106556

    CAS  Article  Google Scholar 

  62. V. Grubisic, Air tightness control of passenger car wheels. Engineering. 9, 171–180 (2017). https://doi.org/10.4236/eng.2017.92008

    CAS  Article  Google Scholar 

  63. J.D. Mabon, E. Williams, D.B. Woodcock, Performance assessment techniques for commercial vehicle wheels. SAE 1976: 760043 (1976)

  64. V. Grubisic, G. Fischer, Automotive wheels, methods and procedure for optimal design and testing. SAE 1983: 830135. (1983)

  65. H.M. Karandikar, W. Fuchs, Fatigue life prediction for wheels by simulation of the rotating bending test. SAE 1990: 900147 (1990)

  66. M. Guo, R. Bhandarkar, B. Lin, Clamp load consideration in fatigue life prediction of a cast aluminum wheel using finite element analysis. SAE 2004–01–1581 (2004)

  67. R. Shang, W. Altenhof, H. Hu, N. Li, Rotary fatigue analysis of forged magnesium road wheels. SAE Int. 2008–01–021 (2008)

  68. X. Wang, X. Zhang, Simulation of dynamic cornering fatigue test of a steel passenger car wheel. Int. J. Fatigue. 32, 434–442 (2010). https://doi.org/10.1016/j.ijfatigue.2009.09.006

    CAS  Article  Google Scholar 

  69. F. Ballo, R. Frizzi, G. Mastinu, D. Mastroberti et al., Lightweight design and construction of aluminum wheels. SAE Tech. Paper. (2016). https://doi.org/10.4271/2016-01-1575

    Article  Google Scholar 

  70. F. Renner, H. Zenner, Fatigue strength of die-cast magnesium components. Fatigue Fract. Eng. Mater. Struct. 25, 1157–1168 (2002). https://doi.org/10.1046/j.1460-2695.2002.00607.x

    Article  Google Scholar 

  71. M. Tebaldini, C. Petrogalli, G. Donzella, G.M. La Vecchia, Estimation of fatigue limit of a A356–T6 automotive wheel in presence of defects. Procedia Struct. Integr. 7, 521–529 (2017). https://doi.org/10.1016/j.prostr.2017.11.121

    Article  Google Scholar 

  72. M. Tebaldini, C. Petrogalli, G. Donzella, M. Gelfi, G.M. La Vecchia, A356–T6 wheels: influence of casting defects on fatigue design. Fatigue Fract. Eng. Mater. Struct. 41, 1784–1793 (2018). https://doi.org/10.1111/ffe.12820

    Article  Google Scholar 

  73. U. Kocabicak, M. Firat, Numerical analysis of wheel cornering fatigue tests. Eng. Fail. Anal. 8, 339–354 (2001)

    CAS  Article  Google Scholar 

  74. S. Zeljko, K. Dimitrije, An alternative design of testing bench for dynamic wheel cornering fatigue tests. Int. Sci. J. "TRANS MOTAUTO WORLD" WEB ISSN 2534–8493 (2018)

  75. B. Shahidi, U. Stuhec, B. Shahidi, S. Tavakkoli, D. Chen, Y.Q. Liu, System level durability engineering in CAE. SAE 2006–01–1981 (2006)

  76. J. Meng, P. Zhu, Z. Liu, Q. Ji, Integration of multi-step stamping effects in the bending fatigue analysis of a steel wheel. Fatigue Fract. Eng. Mater. Struct. 36, 795–808 (2013). https://doi.org/10.1111/ffe.12047

    Article  Google Scholar 

  77. B. Das, S.K. Paul, A. Singh, K.S. Arora, M. Shome, The effect of thickness variation and pre-strain on the cornering fatigue life prediction of a DP600 steel wheel disc. Int. J. Fatigue. 139, 105799 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105799

    CAS  Article  Google Scholar 

  78. D. Shang, X. Liu, Y. Shan, E. Jiang, Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel. Int. J. Fatigue. 93, 173–183 (2016). https://doi.org/10.1016/j.ijfatigue.2016.08.020

    CAS  Article  Google Scholar 

  79. B. Das, A. Singh, K.S. Arora, M. Shome, S.K. Paul, Influence of pre-straining path on high cycle fatigue performance of DP 600 steel. Int. J. Fatigue. (2019). https://doi.org/10.1016/j.ijfatigue.2019.05.017

    Article  Google Scholar 

  80. AkhilendraSingh BimalDas, S.K. Paul, K.S. Arora, M. Shome, Correlation between fatigue response of preformed bend DP600 steel specimen and wheel disc. Fatigue Fract. Eng. Mater. Struct. 43, 2842–2853 (2020). https://doi.org/10.1111/ffe.13299

    Article  Google Scholar 

  81. Z.-G. Zheng, T. Sun, Xu. Xi-Yong, S.-Q. Pan, S. Yuan, Numerical simulation of steel wheel dynamic cornering fatigue test. Eng. Fail. Anal. 39, 124–134 (2014). https://doi.org/10.1016/j.engfailanal.2014.01.021

    CAS  Article  Google Scholar 

  82. Z. Zheng, S. Yuan, T. Sun, S. Pan, Fractographic study of fatigue cracks in a steel car wheel. Eng. Fail. Anal. 47, 199–207 (2015). https://doi.org/10.1016/j.engfailanal.2014.09.010

    CAS  Article  Google Scholar 

  83. M. Roy, Y. Nadot, D.M. Maijer, G. Benoit, Multiaxial fatigue behaviour of A356–T6. Fatigue Fract. Eng. Mater. Struct. 35, 1148–1159 (2012). https://doi.org/10.1111/j.1460-2695.2012.01702.x

    CAS  Article  Google Scholar 

  84. A. Pastirmaci, A. Kara, C. Kalender, Optimization of dynamic cornering fatigue test process of aluminum alloy wheels. Key Eng. Mater. 774, 361–366 (2018). https://doi.org/10.4028/www.scientific.net/KEM.774.361

    Article  Google Scholar 

  85. F. Bagherzadeh, S. Murugesan, P. Deka, Material comparison of dynamic cornering fatigue test (iso3006) for automotive wheel rim. Int. J. Eng. Technol. 9(4), 881–886 (2020)

    Article  Google Scholar 

  86. C. Munirathinam, B. Rajendran, V. Seguvarathinam, R. Krishnamurthy et al., Evaluation through realistic validation. Correlation of CAE with rig testing and field testing for automotive wheel by strain measurement method. SAE Tech. Paper. (2019). https://doi.org/10.4271/2019-26-0351

    Article  Google Scholar 

  87. S. Majumdar, S. Roy, K.K. Ray, Fatigue performance of dual-phase steels for automotive wheel application. Fatigue Fract. Eng. Mater. Struct. 40, 315–332 (2016). https://doi.org/10.1111/ffe.12491

    Article  Google Scholar 

  88. SAE J175, Wheels-Impact test procedure-Road vehicles. (1996)

  89. C.L. Chang, S.H. Yang, Finite element simulation of wheel impact test. J. Achiev. Mater. Manuf. Eng. 28(2), 167–170 (2008)

    Google Scholar 

  90. R. Shang, W. Altenhof, H. Hu, Kinetic energy compensation of tire absence in numerical modeling of wheel impact testing. No. 2005-01-1825. SAE (2005)

  91. C.-L. Chang, S.-H. Yang, Simulation of wheel impact test using finite element method. Eng. Fail. Anal. 16, 1711–1719 (2009). https://doi.org/10.1016/j.engfailanal.2008.12.010

    Article  Google Scholar 

  92. W. Xiaofei, L. Xiandong, S. Yingchun, J. Er, Y. Haiwen, Nmerical and experimental investigation on the effect of tire on the 130 impact test of automobile wheel. Adv. Eng. Softw. 133, 20–27 (2019). https://doi.org/10.1016/j.advengsoft.2019.04.005

    Article  Google Scholar 

  93. Q. Gao, Y. Shan, X. Wan, Q. Feng, X. Liu, 90-degree impact bench test and simulation analysis of automobile steel wheel. Eng. Fail. Anal. 105, 143–155 (2019). https://doi.org/10.1016/j.engfailanal.2019.06.097

    Article  Google Scholar 

  94. R. Shang, W. Altenhof, N. Li, H. Hu, Wheel impact performance with consideration of material inhomogeneity and a simplified approach for modeling. Int. J. Crashworthiness. 10(2), 137–150 (2005). https://doi.org/10.1533/ijcr.2005.0333

    Article  Google Scholar 

  95. M. Zhu, B. Han, Analysis of impact test of aluminum disc wheels based on FEM. SAE 2007-01-3648 (2007)

  96. C. Muhammet, Numerical simulation of dynamic side impact test for an aluminum alloy wheel. Sci. Res. Essays. 5(18), 2964–2701 (2010)

    Google Scholar 

  97. K. Mohammed Billal, S. Vinothkumar, S. Srinivasan, A. Nesarikar, Simulation and test correlation of wheel impact test. SAE Tech. Papers. (2011). https://doi.org/10.4271/2011-28-0129

    Article  Google Scholar 

  98. M. Chauhan, G. Kotwal, A. Majge, Numerical simulation of tire and wheel assembly impact test using finite element method. SAE Tech. Paper. (2015). https://doi.org/10.4271/2015-26-0186

    Article  Google Scholar 

  99. S. Otarawanna, P. Uttamung, A. Malatip, Finite element simulation and experimental validation of the cracking phenomenon in aluminium alloy wheels during the impact test. AIP Conf. Proc. 2030, 020303 (2018). https://doi.org/10.1063/1.5066944

    Article  Google Scholar 

  100. A. Zapata, O.A. González-Estrada, A. Pertuz, Damage model for the impact test of an automotive aluminum wheel. IOP Conf. Ser.: J. Phys. 1126, 012002 (2018). https://doi.org/10.1088/1742-6596/1126/1/012002

    CAS  Article  Google Scholar 

  101. D. Wang, S. Zhang, X. Wenchao, Multi-objective optimization design of wheel based on the performance of 13° and 90° impact tests. Int. J. Crashworthiness. 24(3), 336–361 (2019). https://doi.org/10.1080/13588265.2018.1451229

    Article  Google Scholar 

  102. X. Jiang, H. Liu, R. Lyu, Y. Fukushima, N. Kawada, Z. Zhang, J. Dongying, Optimization of magnesium alloy wheel dynamic impact performance. Adv. Mater. Sci. Eng. 2019, 2632031 (2019). https://doi.org/10.1155/2019/2632031

    CAS  Article  Google Scholar 

  103. M. Easton, W.Q. Song, T. Abbott, A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling. Mater. Des. 27, 935–946 (2006). https://doi.org/10.1016/j.matdes.2005.03.005

    CAS  Article  Google Scholar 

  104. S. Suman, J. Abhimanyu Abrol, K. Ravi, Impact and modal analysis for different alloy wheel compositions. IOP Conf. Ser.: Mater. Sci. Eng. 263, 062074 (2017)

    Article  Google Scholar 

  105. G. Previati, F. Ballo, M. Gobbi, G. Mastinu, Radial impact test of aluminium wheels - numerical simulation and experimental validation. Int. J. Impact Eng. 126, 117–134 (2019). https://doi.org/10.1088/1757-899X/263/6/062074

    Article  Google Scholar 

  106. F.A. Cardoso, A.L.A. Costa, Finite elements simulation of impact in a passenger car tyre. SAE 2007–01–2878 (2007)

  107. Y. Leost, A. Sonntag, T. Hasse, Modeling of a cast aluminum wheel for crash application. in 11th European LS-DYNA Conference 2017, Salzburg, Austria (2017)

  108. L.D. Nurkala, R.S. Wallace, Development of the SAE biaxial wheel test load file. SAE 2004–01–1578 (2014)

  109. K. Archibald, W. Schnaidt, R. Wallace, K. Archibald, Minimum cycle requirement for SAE J2562. SAE International 2014–01–0073 (2014)

  110. V. Grubisic, H. Lowak, Possibility to determine aluminum wheels fatigue life by local strain concept. SAE 880696 (1988)

  111. C.N. Ko, Life evaluation of an angular contact wheel bearing based upon random load cycles. SAE 871981 (1987)

  112. A. Rupp, V. Grubisic, J. Neugebauer, Development of a multi-componenet wheel force transducer – a tool to supprot vehicle design and validation. SAE 930258 (1993)

  113. L. Feng, G. Lin, W. Zhang, H. Pang, T. Wang, Design and optimization of a self-decoupled six-axis wheel force transducer for a heavy truck. J. Automob. Eng. 229(12), 1585–1610 (2015). https://doi.org/10.1177/0954407014566439

    CAS  Article  Google Scholar 

  114. I.D. Huawen Yan, W. Zhang, D. Wang, Wheel force sensor-based techniques for wear detection and analysis of a special road. Sensors. 18, 2493 (2018). https://doi.org/10.3390/s18082493

    Article  Google Scholar 

  115. W. Zhang, C. Suo, Q. Wang, A novel sensor system for measuring wheel loads of vehicles on highways. Sensors. 8, 7671–7689 (2008). https://doi.org/10.3390/s8127671

    Article  Google Scholar 

  116. M. Decker, G. Savaidis, Measurement and analysis of wheel loads for design and fatigue evaluation of vehicle chassis components. Fatigue Fract. Eng. Mater. Struct. 25, 1103–1119 (2002). https://doi.org/10.1046/j.1460-2695.2002.00593.x

    Article  Google Scholar 

  117. G. Cristobal, A. Javier, R. Salvador, Design of reliable accelerated fatigue test programs based on real market use. SAE 2010–36–0029 (2010)

  118. EUWA Standard ES 3.23, Biaxial fatigue test for truck wheels, Germany (2017)

  119. X. Wan, Y. Shan, X. Liu, H. Wang, J. Wang, Simulation of biaxial wheel test and fatigue life estimation considering the influence of tire and wheel camber. Adv. Eng. Softw. 92, 57–64 (2016)

    Article  Google Scholar 

  120. F.M. Santiciolli, R. Möller, I. Krause, F.G. Dedini, Simulation of the scenario of the biaxial wheel fatigue test. Adv. Eng. Softw. 000, 1–11 (2017). https://doi.org/10.1016/j.advengsoft.2017.08.006

    Article  Google Scholar 

  121. Y. Duan, F. Zhang, D. Yao, H. Jin-hua, X. Rui Dong, Y.G. Zhao, Multiscale fatigue-prediction method to assess life of A356–T6 alloy wheel under biaxial loads. Eng. Fail. Anal. 130, 105752 (2021). https://doi.org/10.1016/j.engfailanal.2021.105752

    CAS  Article  Google Scholar 

  122. K. Ambarish, R.S. Abbas, K. Ajay, Fatigue analysis of a suspension for an in-wheel electric vehicle. Eng. Fail. Anal. (2016). https://doi.org/10.1016/j.engfailanal.2016.05.020

    Article  Google Scholar 

  123. C.M. Sonsino, M. Breitenberger, I. Krause, K. Pötter, S. Schröder, K. Jürgens, Required fatigue strength (RFS) for evaluating of spectrum loaded components by the example of cast-aluminium passenger car wheels. Int. J. Fatigue. (2020). https://doi.org/10.1016/j.ijfatigue.2020.105975

    Article  Google Scholar 

  124. Y. Zhao, M. Ma, R. Qin, Y. Ling, G. Wang, X. Wan et al., A fabrication history based strain-fatigue model for prediction of crack initiation in a radial loading wheel. Fatigue Fract. Eng. Mater. Struct. 40, 1882–1892 (2017). https://doi.org/10.1111/ffe.12607

    Article  Google Scholar 

  125. P. Reipert, The optimization of an extremely light cast aluminium wheel rim. Int. J. Vehicle Des. 6, 509–513 (1985)

    Google Scholar 

  126. G.I.N. Rozvany, A critical review of established methods of structural topology optimization. Struct. Multidisc. Optim. (2009). https://doi.org/10.1007/s00158-007-0217-0

    Article  Google Scholar 

  127. J. Chen, V. Shapiro, K. Suresh, I. Tsukanov, Shape optimization with topological changes and parametric control. Int. J. Numer. Methods Eng. (2006). https://doi.org/10.1002/nme.1943

    Article  Google Scholar 

  128. D. Xiao, H. Zhang, X. Liu, T. He, Y. Shan, Novel steel wheel design based on multi-objective topology optimization. J. Mech. Sci. Technol. 28(3), 1007–1016 (2014). https://doi.org/10.1007/s12206-013-1174-8

    Article  Google Scholar 

  129. L. Chen, L. Shunping, H. Chen, D.M. Saylor, S. Tong, Study on the design method of equal strength rim based on stress and fatigue analysis using finite element method. Adv. Mech. Eng. 9(3), 1–11 (2017). https://doi.org/10.1177/1687814017692698

    Article  Google Scholar 

  130. WenchaoXu DengfengWang, J.G. YongWang, Design and optimization of tapered carbon-fiber-reinforced polymer rim for carbon/aluminum assembled wheel. Fatigue Fract. Eng. Mater. Struct. 42, 253–270 (2021). https://doi.org/10.1002/pc.25822

    CAS  Article  Google Scholar 

  131. K. Linghu, B. Xiao, D. Zhang, X. Li, F. Wang, Z. Wang, Shape optimization of passenger vehicle wheel on fatigue failure. IOP Conf. Ser.: Mater. Sci. Eng. 381, 012025 (2018). https://doi.org/10.1088/1757-899X/381/1/012025

    Article  Google Scholar 

  132. R. Muthuraj, S. Thiyagarajan, E. Vignesh, C. Kannan, et al., The disc gutter wheel for commercial vehicles, a solution for overheating problems with robustness in design. SAE Tech. Paper 2017–26–0369, (2017) https://doi.org/10.4271/2017-26-0369.

  133. D. Wang, S. Zhang, S. Zhang, Y. Wang, Analysis and multi-objective optimization design of wheel based on aerodynamic performance. Adv. Mech. Eng. 11(5), 1–19 (2019). https://doi.org/10.1177/1687814019849733

    Article  Google Scholar 

  134. W. Puangchaum, S. Rooppakhun, V. Phunpeng, Parametric design and optimization of alloy wheel based on dynamic cornering fatigue test. in Proceedings of the 5th IIAE International Conference on Industrial Application Engineering, 2017. https://doi.org/10.12792/iciae2017.035

  135. H. Akbulut, On optimization of a car rim usingfinite element method. Finite Elem. Anal. Des. 39, 433–443 (2003)

    Article  Google Scholar 

  136. S. Beigzadeh, J. Marzbanrad, Automotive wheel optimization to enhance the fatigue life. Int. J. Automot. Eng. 8(3), 2739–2758 (2018)

    Google Scholar 

  137. J. Xin, L. Hai, Y. Fukushima, M. Otake, N. Kawada, Z. Zhenglai et al., Multi-objective optimization design of magnesium alloy wheel based on topology optimization. J. Mater. Sci. Eng. B. 9(1–2), 13–24 (2019). https://doi.org/10.17265/2161-6221/2019.1-2.003

    Article  Google Scholar 

  138. D. Wang, X. Wenchao, Fatigue failure analysis and multi-objective optimization for the hybrid (bolted/bonded) connection of magnesium-aluminum alloy assembled wheel. Eng. Fail. Anal. 112, 104530 (2020). https://doi.org/10.1016/j.engfailanal.2020.104530

    CAS  Article  Google Scholar 

  139. A. Rashwan, Topology optimization and rim design. Int. J. Eng. Manage. Sci. 4, 4 (2019). https://doi.org/10.21791/IJEMS.2019.4.10

    Article  Google Scholar 

  140. T. Noda, N. Ueki, H. Komatsu, K. Nishimoto, T. Shimazu, Development of aluminum disc wheel for truck and bus. SAE 820343 (1982)

  141. Z. Li, S. DiCecco, W. Altenhof, M. Thomas, R. Banting, H. Henry, Stress and fatigue life analyses of a five-piece rim and the proposed optimization with a two-piece rim. J. Terramech. 52, 31–45 (2014). https://doi.org/10.1016/j.jterra.2014.02.002

    Article  Google Scholar 

  142. R. Vijayakumar, C. Ramesh, R. Boobesh, R. Ram Surya, P. Souder Rajesh, Investigation on automobile wheel rim aluminium 6061 and 6066 Alloys using ANSYS WORKBENCH. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.798

    Article  Google Scholar 

  143. M. Tocci, A. Pola, G.M. La Vecchia, M. Modigell, Characterization of a new aluminium alloy for the production of Hybrid Aluminum Forging. Procedia Eng. 109, 303–311 (2015). https://doi.org/10.1016/j.proeng.2015.06.237

    CAS  Article  Google Scholar 

  144. Y. Nakaia, M. Sakaa, H. Yoshidaa, K. Asayamaa, S. Kikuchib, Fatigue crack initiation site and propagation paths in high-cycle fatigue of magnesium alloy AZ31. Int. J. Fatigue. 123, 248–254 (2019). https://doi.org/10.1016/j.ijfatigue.2019.02.024

    CAS  Article  Google Scholar 

  145. W. Qiang, Z. Zhi-min, Z. Xing, L. Guo-jun, New extrusion process of Mg alloy automobile wheels. Trans. Nonferrous Metals Soc. China. 20, s599–s603 (2020)

    Google Scholar 

  146. X. Zhao, P. Gao, Z. Zhang, Q. Wang, F. Yan, Fatigue characteristics of the extruded AZ80 automotive wheel. Int. J. Fatigue. (2019). https://doi.org/10.1016/j.ijfatigue.2019.105393

    Article  Google Scholar 

  147. Xi. Zhao, P. Gao, G. Chen, J. Wei, Z. Zhu, F. Yan et al., Effects of aging treatments on low cycly fatigue behavious of extruded AZ80 for automobile wheel disks. Mater. Sci. Eng. A. 799, 140366 (2021). https://doi.org/10.1016/j.msea.2020.140366

    CAS  Article  Google Scholar 

  148. A. Dey, H. Jugade, V. Jain, M. Adhikary, Cracking phenomena in automotive wheels: an insight. Eng. Fail. Anal. 105, 1273–1286 (2019). https://doi.org/10.1016/j.engfailanal.2019.01.069

    CAS  Article  Google Scholar 

  149. Y. Duana, F. Zhanga, D. Yaoa, L. Tiana, L. Yanga, Y. Guanaand, J. Huc, Numerical prediction of fatigue life of an A356–T6 alloy wheel considering the influence of casting defect and mean stress. Eng. Fail. Anal. 118, 104903 (2020). https://doi.org/10.1016/j.engfailanal.2020.104903

    CAS  Article  Google Scholar 

  150. C.M. Sonsino, J. Ziese, Fatigue strength and applications of cast aluminium alloys with different degrees of porosity. Int. J. Fatigue. 15(2), 75–84 (1993)

    CAS  Article  Google Scholar 

  151. P. Li, D.M. Maijer, T.C. Lindley, P.D. Lee, A through process model of the impact of in-service loading, residual stress, and microstructure on the final fatigue life of an A356 automotive wheel. Mater. Sci. Eng., A. 460–461, 20–30 (2007). https://doi.org/10.1016/j.msea.2007.01.076

    CAS  Article  Google Scholar 

  152. S. Bhattacharyya, M. Adhikary, M.B. Das, S. Sarkar, Failure analysis of cracking in wheel rims–material and manufacturing aspects. Eng. Fail. Anal. 15, 547–554 (2008). https://doi.org/10.1016/j.engfailanal.2007.04.007

    Article  Google Scholar 

  153. G. Fischer, V.V. Grubisic, Design criteria and durability approval of wheel hubs. SAE 982840 (1998)

  154. F. Rondinaa, S. Taddiaa, L. Mazzocchettia, L. Donatia, G. Minaka, P. Rosenbergb et al., Development of full carbon wheels for sport cars with high-volume technology. Compos. Struct. 192, 368–378 (2018). https://doi.org/10.1016/j.compstruct.2018.02.083

    Article  Google Scholar 

  155. C. Weihaoa, L. Xiandong, S. Yingchun, W. Xiaofei, J. Er, Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property. Adv. Eng. Softw. 116, 1–8 (2018). https://doi.org/10.1016/j.advengsoft.2017.11.004

    Article  Google Scholar 

  156. P.S.I. Singh et al. (eds.), Advances in materials engineering and manufacturing processes, Lecture Notes on Multidisciplinary Industrial Engineering, https://doi.org/10.1007/978-981-15-4331-9_2

  157. M. Nishi, Study of weight reduction and performance control by CFRP local modifying technology. SAE Tech. Paper. (2018). https://doi.org/10.4271/2018-01-0159

    Article  Google Scholar 

  158. F. Rondinaa, S. Taddiaa, L. Mazzocchettia, L. Donatia, G. Minaka, P. Rosenbergb, A. Bedeschic, E. Dolcinic, Development of full carbon wheels for sport cars with high-volume technology. Compos. Struct. 192, 368–378 (2018)

    Article  Google Scholar 

  159. J. Hirsch, Aluminium in Innovative Light-Weight Car Design. Mater. Trans. 52(5), 818–824 (2011)

    CAS  Article  Google Scholar 

  160. M. Tisza, Z. Lukács, High strength aluminum alloys in car manufacturing. IOP Conf. Ser.: Mater. Sci. Eng. 418, 012033 (2018). https://doi.org/10.1088/1757-899X/418/1/012033

    Article  Google Scholar 

  161. Y.-L. Hsu, S.-G. Wang, T.-C. Liu, Prediction of fatigue failures of aluminum disc wheels using the failure probability contour based on historical data. J. Chin. Inst. Ind. Eng. 21(6), 551–558 (2004)

    Google Scholar 

  162. R.L. Ridder, R.W. Landgraf, S. Thangjitbam, Reliability analysis of an automotive wheel assembly. SAE 930406 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Babu Koppisetti.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koppisetti, S.B., Nallu, R. & Penmetsa, R.R. Passenger Cars Wheel Performance Test Simulation for Service Life Evaluation: A Review. J Fail. Anal. and Preven. (2022). https://doi.org/10.1007/s11668-022-01447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11668-022-01447-0

Keywords

  • Wheel performance tests
  • Wheel test procedures
  • Durability assessment
  • Fatigue testing
  • Impact testing
  • Service life
  • Biaxial fatigue testing