Skip to main content
Log in

Evaluating the Effect of Contact Pad Geometry on the Fretting Fatigue Behavior of Titanium Alloy by Experimental and Finite Element Analysis

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This work evaluated the influence of rectangular grooves at the fretting contact on the fretting fatigue behavior of IMI 834 titanium alloy by performing fretting fatigue experiments with two distinct contact pad geometries, namely flat pad (flat contact interface) and groove pad (rectangular grooves at the contact interface). A plain fatigue test (without fretting) was also performed to better understand the effect of fretting on the fatigue behavior of IMI 834 titanium alloy. A finite element analysis (FEA) model that evaluated stress distribution at the contact interface was also used to investigate the damage processes. The fracture surface and fretting area of the tested object were evaluated using a scanning electron microscope and electron microscopy. The findings demonstrated that fretting fatigue lifetimes attained with a contact pad having grooves at the fretting contact were significantly longer than those achieved with a flat type contact pad. The results of the experimental testing, as well as the stress distribution, were used to address the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.B. Waterhouse, Fretting wear. Wear. 100, 107–118 (1984)

    Article  Google Scholar 

  2. D.A. Hills, D. Nowell, J.J. O’Connor, On the mechanics of fretting fatigue. Wear. 125, 129–146 (1988)

    Article  Google Scholar 

  3. R. B. Waterhouse, Fretting wear, wear, 1984; 100: 107-118. R. B. Waterhouse, Fretting, Treatise on Materials Science and Technology, 13, 259-286 (1979)

  4. R.B. Waterhouse, Fretting at high temperature. Tribol. Int. 14(4), 203–207 (1981)

    Article  CAS  Google Scholar 

  5. R.B. Waterhouse, Fretting fatigue. Int. Mater. Rev. 37, 77 (1992)

    Article  CAS  Google Scholar 

  6. Y. Mutoh, Mechanisms of fretting fatigue. JSME Int J., Ser. A. 38, 405–415 (1995)

    Google Scholar 

  7. R.B. Waterhouse, M. Lamb, Fretting corrosion of orthopedic implant materials by bone cement. Wear. 60, 357–368 (1980)

    Article  CAS  Google Scholar 

  8. J.F. Zheng, J. Luo et al., Fretting wear behaviors of a railway axle steel. Tribol. Int. 43, 906–911 (2010)

    Article  CAS  Google Scholar 

  9. M. Jayaprakash, Y. Mutoh et al., Effect of contact pad rigidity on fretting fatigue behavior of NiCrMoV turbine steel. Int. J. Fatigue. 32, 1788–1794 (2010)

    Article  CAS  Google Scholar 

  10. Y. Mutoh, M. Jayaprakash, Tangential stress range–compressive stress range diagram for fretting fatigue design curve. Tribol. Int. 44, 1394–1399 (2011)

    Article  CAS  Google Scholar 

  11. M. Jayaprakash, S. Anchalee, Y. Otsuka, Y. Mutoh, TSR–CSR diagram for 304 stainless steel. Int. J. Fatigue. 54, 99–105 (2013)

    Article  CAS  Google Scholar 

  12. J. Murugesan, Y. Mutoh, Fretting fatigue strength prediction of dovetail joint and bolted joint by using the generalized tangential stress range–compressive stress range diagram. Tribol. Int. 76, 116–121 (2014)

    Article  Google Scholar 

  13. N. Noraphaiphipaksa, C. Kanchanomai, Y. Mutoh, Numerical and experimental investigations on fretting fatigue: Relative slip, crack path, and fatigue life. Eng. Fract. Mech. 112–113, 58–71 (2013)

    Article  Google Scholar 

  14. N. Noraphaiphipaksa, A. Manonukul, C. Kanchanomai, Y. Mutoh, Fretting fatigue life prediction of 316L stainless steel based on elastic–plastic fracture mechanics approach. Tribol. Int. 78, 84–93 (2014)

    Article  CAS  Google Scholar 

  15. N. Noraphaiphipaksa, A. Manonukul, C. Kanchanomai, Y. Mutoh, Fretting-contact-induced crack opening/closure behaviour in fretting fatigue. Int. J. Fatigue. 88, 185–196 (2016)

    Article  CAS  Google Scholar 

  16. K. Pereira, T. Yue, M. Abdel Wahab, Multiscale analysis of the effect of roughness on fretting wear. Tribol. Int. 110, 222–231 (2017)

    Article  Google Scholar 

  17. L. Bohórquez, J. Vázquez et al., On the prediction of the crack initiation path in fretting fatigue. Theoret. Appl. Fract. Mech. 99, 140–146 (2019)

    Article  Google Scholar 

  18. T. Guo et al., Experimental study on fretting-fatigue of bridge cable wires. Int. J. Fatigue. 131, 105321 (2020)

    Article  Google Scholar 

  19. S.L. Sunde et al., Predicting fretting fatigue in engineering design. Int. J. Fatigue. 117, 314–326 (2018)

    Article  Google Scholar 

  20. R.A. Cardoso et al., Wear numerical assessment for partial slip fretting fatigue conditions. Tribol. Int. 136, 508–523 (2019)

    Article  CAS  Google Scholar 

  21. A. Vadiraj, M. Kamaraj, Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys. Tribol. Int. 40, 82–88 (2007)

    Article  CAS  Google Scholar 

  22. K. Li, Fu. Xue-song et al., A mechanism study on characteristic curve of residual stress field in Ti–6Al–4V induced by wet peening treatment. Mater. Des. 86, 761–764 (2015)

    Article  CAS  Google Scholar 

  23. Qi. Yang et al., Investigation of shot peening combined with plasma sprayed CuNiIn coating on the fretting fatigue behavior of Ti-6Al-4V dovetail joint specimens. Surf. Coat. Technol. 358, 833–842 (2019)

    Article  CAS  Google Scholar 

  24. G. Rousseau, C. Montebello, Y. Guilhem, S. Pommier, A novel approach to model fretting-fatigue in multiaxial and nonproportional loading conditions. Int. J. Fatigue. 126, 79–89 (2019)

    Article  Google Scholar 

  25. M.P. Szolwinski, T.N. Farris, Mechanics of fretting fatigue crack formation. Wear. 198, 93–107 (1996)

    Article  CAS  Google Scholar 

  26. K. Pereira, N. Bhatti, M. Abdel Wahab, Prediction of fretting fatigue crack initiation location and direction using cohesive zone model. Tribol. Int. 127, 245–254 (2018)

    Article  Google Scholar 

  27. S. Khot, U. Borah, Finite Element Analysis of Pin-on-Disc Tribology Test. Int. J. Sci. Res. 4, 1475–1481 (2015)

    Google Scholar 

  28. M.B. Davanageri, S. Narendranath, R. Kadoli, Finite element wear behaviour modeling of super duplex stainless steel AISI 2507 Using Ansys. Mater. Sci. Eng. 376, 1–13 (2018)

    Google Scholar 

  29. JSME Standard method of fretting fatigue testing, JSME S 015-2002. The Japan Society of Mechanical Engineers; 2002.

  30. V. Sabelkin, S. Mall, Relative slip-on contact surface under partial slip fretting fatigue condition. Strain. 42, 11–20 (2006)

    Article  Google Scholar 

  31. D. Takazaki, M. Kubota et al., Effect of contact pressure on fretting fatigue failure of oil-well pipe material. Int. J. Fatigue. 101, 67–74 (2017)

    Article  Google Scholar 

  32. J. Chao, Fretting-fatigue induced failure of a connecting rod. Eng. Fail. Anal. 96, 186–201 (2019)

    Article  CAS  Google Scholar 

  33. R. Garg, G. Sudhakar Rao, V. Bhartia, V. Singh, Fretting fatigue and wear behaviour of Timetal 834. Proc. Eng. 55, 661–665 (2013)

    Article  CAS  Google Scholar 

  34. S. Kartik Prasad, G.A. Abhaya, K.V. Vikas Kumar, K.B. Rajulapati, S. Rao, Fatigue crack growth behaviour of a near a titanium alloy Timetal 834 at 450 _C and 600 _C. Eng. Fract. Mech. 102, 194–206 (2013)

    Article  Google Scholar 

  35. N.A. Bhatti, K. Pereira, M.A. Wahab, Effect of stress gradient and quadrant averaging on fretting fatigue crack initiation angle and life. Tribol. Int. 131, 212–221 (2019)

    Article  Google Scholar 

  36. D. Infante-Gracia, E. Giner, H. Miguelez, Magd Abdel Wahab, Numerical analysis of the influence of micro-voids on fretting fatigue crack initiation lifetime. Tribol. Int. 135, 121–129 (2019)

    Article  Google Scholar 

  37. W.N. Findley, A theory for the effect of mean stress on the fatigue of metals under combined torsion and axial load or bending. J. Eng. Ind. 81(4), 301–305 (1959)

    Article  Google Scholar 

  38. M. Jayaprakash, Y. Mutoh, K. Yoshii, Fretting fatigue behavior and life prediction of automotive steel bolted joint. Mater. Des. 32, 3911–3919 (2011)

    Article  CAS  Google Scholar 

  39. D.G. Wang, M. Abdel Wahab et al., Finite element analysis of fretting fatigue of fretted wires. Int. J. Fract. Fat. Wear. 3, 135–142 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jayaprakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangral, S., Jayaprakash, M. Evaluating the Effect of Contact Pad Geometry on the Fretting Fatigue Behavior of Titanium Alloy by Experimental and Finite Element Analysis. J Fail. Anal. and Preven. 22, 773–784 (2022). https://doi.org/10.1007/s11668-022-01369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01369-x

Keywords

Navigation