Skip to main content
Log in

Ultra High-Performance Concrete as Alternative Repair Method: A Review

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This review paper discussed on the behavior of Ultra High-Performance Concrete (UHPC) in the concrete industry. Since the emergence of unique design of concrete, the needs of UHPC can contribute to alternative solutions to the High-Performance Concrete (HPC) and also normal concrete. In this review, definition, materials and techniques of producing, chemical analysis, and prediction software on previous and current works of UHPC were presented. Moreover, in this paper, the benefits of UHPC as compared to the types of concrete were also discussed. As a conclusion, UHPC needs to be implemented more in the construction nowadays. Extra strong, durable, and slimmer design of concrete structures can be an alternative to a sustainable and economic design that can last longer with less supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M.M. Reda, N.G. Shrive, J.E. Gillott, Microstructural investigation of innovative UHPC. Cem. Concr. Res. 29(3), 323–329 (1999)

    Article  CAS  Google Scholar 

  2. S. Zhao, L. Jiang, H. Chu, A preliminary investigation of energy consumption in fracture of ultra-high-performance concrete. Constr. Build. Mater. 2020(237), 117634 (2020)

    Article  Google Scholar 

  3. N.V. Tue, M. Küchler, J. Ma, S. Henze, Innovative ultra-high performance concrete products in practice. Examples and recommendations for material applications in line with market demand. Betonwerk und Fertigteil-Technik/Concrete Plant and Precast Technology. 76(2), 92–93 (2010)

  4. S.H. Ghasemzadeh Mosavinejad, M.A. Mirgozar Langaroudi, J. Barandoust, A. Ghanizadeh, Electrical and microstructural analysis of UHPC containing short PVA fibers. Constr. Build. Mater. 237, 117448 (2020)

    Article  Google Scholar 

  5. S. Wiese, J. Schnell, W. Kurz, Innovative shear connectors in ultra-high-performance concrete. Beton- und Stahlbetonbau. 106(10), 694–699 (2011)

    Article  Google Scholar 

  6. K.F. McMullen, A.E. Zaghi, Experimental evaluation of full-scale corroded steel plate girders repaired with UHPC. J. Bridge Eng. 25(4), 0402001 (2020)

    Article  Google Scholar 

  7. K. Tamanna, S.N. Raman, M. Jamil, R. Hamid, Utilization of wood waste ash in construction technology: A review. Constr. Build. Mater. 237, 117654 (2020)

    Article  CAS  Google Scholar 

  8. N.Q. Feng, W. Yang, Research and application of micro-bead ultra-highperformance concrete. IOP Conf. Series: Mater. Sci. Eng. 629, 012019 (2019)

    Article  CAS  Google Scholar 

  9. J. Salimi, A.M. Ramezanianpour, M.J. Moradi, Studying the effect of low reactivity metakaolin on free and restrained shrinkage of high-performance concrete. J. Build. Eng. 28, 101053 (2020)

    Article  Google Scholar 

  10. A. Alsalman, C.N. Dang, J.R. Martí-Vargas, W.M. Hale, Mixture-proportioning of economical UHPC mixtures. J. Build. Eng. 27, 100970 (2020)

    Article  Google Scholar 

  11. S. Das, S.K. Singh, J. Mishra, S. Mustakim, Effect of rice Husk Ash and Silica Fume as strength-enhancing materials on properties of modern concrete—a comprehensive review, in Lecture Notes in Civil Engineering. (Springer, 2020), p. 253–266

  12. N.V. Tue, M. Küchler, J. Ma, S. Henze, Considerations for the application orientated material composition of UHPC. Beton- und Stahlbetonbau. 101(11), 834–841 (2006)

    Google Scholar 

  13. E. Fehling, T. Leutbecher, Ultra high performance concrete (UHPC) - A Challenge in structural design. Proceedings of the fib Symposium - Keep Concrete Attractive, vol. 2, pp. 251–256 (2005)

  14. K.P. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties and Materials. 1993: McGraw-Hill

  15. V. Kannan, K. Ganesan, Strength and water absorption properties of ternaryblended cement mortar using rice husk ash and metakaolin. J. Eng. Research. 1(4), 51–59 (2012)

    Google Scholar 

  16. S. Zhao, W. Sun, Nano-mechanical behavior of a green ultra-high-performance concrete. Constr. Build. Mater. 63, 150–160 (2014)

    Article  Google Scholar 

  17. V.M. Maholtra, P.K. Mehta, Pozzolanic and Cementitious Materials. Taylor & Francis (1996)

  18. C. Wang et al., Preparation of ultra-high-performance concrete with common technology and materials. Cement Concr. Compos. 34(4), 538–544 (2012)

    Article  CAS  Google Scholar 

  19. K. Sobolev, The development of a new method for the proportioning of high-performance concrete mixtures. Cem. Concr. Compos. 26(7), 901–907 (2004)

    Article  CAS  Google Scholar 

  20. M.V. Katrin Habel, Emmanuel Denaria, Eugen Bruhwiler development of the mechanical properties of an ultra high performance fiber reinforced concrete. Cem. Concr. Res. 36, 1362–1370 (2006)

    Article  Google Scholar 

  21. J. Sun, Research status and prospects on the ultra high-performance concrete. Adv. Mater. Res. 168–170, 1506–1508 (2011)

    Google Scholar 

  22. A. Tafraoui, G. Escadeillas, S. Lebaili, T. Vidal, Metakaolin in the formulation of UHPC. Constr. Build. Mater. 23(2), 669–674 (2009)

    Article  Google Scholar 

  23. A.M. Neville, Properties of Concrete. Fourth Edition. Prentice Hall (2005)

  24. B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concr. Compos. 23(6), 441–454 (2001)

    Article  CAS  Google Scholar 

  25. J.K. Rafat Siddique, Influence of metakaolin on the properties of mortar and concrete: a review. Appl. Clay Sci. 43, 392–400 (2009)

    Article  Google Scholar 

  26. D.M. Roy, P. Arjunan, M.R. Silsbee, Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cem. Concr. Res. 31(2001), 1809–1813 (2001)

    Article  CAS  Google Scholar 

  27. N.U. Kockal, T. Ozturan, Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes. J. Hazard. Mater. 179(1–3), 954–965 (2010)

    Article  CAS  Google Scholar 

  28. A.Y. Atta, B.Y. Jibril, B.O. Aderemi, S.S. Adefila, Preparation of analcime from local kaolin and rice husk ash. Appl. Clay Sci. 61, 8–13 (2012)

    Article  CAS  Google Scholar 

  29. P. Richard, M. Cherezy, Composition of reactive powder concrete. Cem. Concr. Res. 25(7), 1501–1511 (1995)

    Article  CAS  Google Scholar 

  30. J. Dugat, N. Roux, G. Bernier, Mechanical properties of reactive powder concrete. Mater. Struct. 29, 233–240 (1996)

    Article  CAS  Google Scholar 

  31. V. Matte, M. Moranville, Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes. Cement Concr. Compos. 21, 1–9 (1999)

    Article  CAS  Google Scholar 

  32. K. Sobolev, P. Türker, S. Soboleva, G. Iscioglu, Utilization of waste glass in ECO-cement: Strength properties and microstructural observations. Waste Manag. 27(7), 971–976 (2007)

    Article  CAS  Google Scholar 

  33. R.N. Swamy, Cement Replacement Materials. (Surrey University Press, UK, 1986)

    Google Scholar 

  34. M.S. Morsy, S.H. Alsayed, M. Aqel, Effect of nano-clay on mechanical properties and microstructures of ordinary portland cement mortar. Int. J. Civil Environ. Eng. IJCEE-IJENS 10(01), 21–25 (2010)

    Google Scholar 

  35. I. Smallwood, S. Wild, E. Morgan, The resistance of metakaolin (MK)–Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)––programme of research and preliminary results. Cem. Concr. Compos. 25(8), 931–938 (2003)

    Article  CAS  Google Scholar 

  36. A.E. Al-Salami, H. Shoukry, M.S. Morsy, Thermo-mechanical characteristics of blended white cement pastes containing ultrafine nano clays. Int. J. Green Nanotechnol. Biomed. 4(4), 516–527 (2012)

    Article  CAS  Google Scholar 

  37. E. Ghafari, H. Costa, E. Júlio, Critical review on eco-efficient ultra-high-performance concrete enhanced with nano-materials. Constr. Build. Mater. 101, 201–208 (2015)

    Article  Google Scholar 

  38. M.A. Megat Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 25(5), 2639–2648 (2011)

    Article  Google Scholar 

  39. M. Kumar, S.K. Singh, N. Singh, N. Singh, Hydration of multicomponent composite cement: OPC-FA-SF-MK. Constr. Build. Mater. 36, 681–686 (2012)

    Article  Google Scholar 

  40. N.J. Coleman, C.L. Page, Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem. Concr. Res. 27(1), 147–154 (1997)

    Article  CAS  Google Scholar 

  41. Z. Li, Z. Ding, Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 33(4), 579–584 (2003)

    Article  CAS  Google Scholar 

  42. M.S. Muhd Norhasri, M. Hamidah, A. Mohd Fadzil, O. Megawati, Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Constr. Build. Mater. 127, 167–175 (2016)

    Article  CAS  Google Scholar 

  43. G. Rodríguez de Sensale, Effect of rice-husk ash on durability of cementitious materials. Cem. Concr. Compos. 32(9), 718–725 (2010)

    Article  Google Scholar 

  44. F. De Larrard, T. Sedran, Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 24(6), 997–1009 (1994)

    Article  Google Scholar 

  45. T.S. Franc¸ois de Larrard, Mixture-proportioning of high-performance concrete. Cem. Concr. Res. 32, 1699–1704 (2002)

    Article  Google Scholar 

  46. H. Yazıcı, H. Yiğiter, A.Ş. Karabulut, B. Baradan, Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel. 87(12), 2401–2407 (2008)

    Article  Google Scholar 

  47. L. Sorelli, G. Constantinides, F. Ulm, F. Toutlemonde, The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques. Cem. Concr. Res. 38(12), 447–1456 (2008)

    Article  Google Scholar 

  48. Y. Qing, Z. Zenan, K. Deyu, C. Rongshen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21(3), 539–545 (2007)

    Article  Google Scholar 

  49. J. Belkowitz, D. Armentrout, An investigation of nano silica in the cement hydration process. Concrete Sustainability Conference (2010)

  50. P. Maravelaki-Kalaitzaki, Z. Agioutantis, E. Lionakis, M. Stavroulaki, V. Perdikatsis, Physico-chemical and mechanical characterization of hydraulic mortars containing nano-titania for restoration applications. Cem. Concr. Compos. 36, 33–41 (2013)

    Article  CAS  Google Scholar 

  51. M.A. Massa, C. Covarrubias, M. Bittner, Ignacio A. Fuentevilla, P. Capetillo, A.V. Marttens, J.C. Carvajal, Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C. 45, 146–153 (2014)

    Article  CAS  Google Scholar 

  52. G. Barluenga, I. Palomar, J. Puentes, Hardened properties and microstructure of SCC with mineral additions. Constr. Build. Mater. 94, 728–736 (2015)

    Article  CAS  Google Scholar 

  53. T. Ramlochan, P. Zacarias, M.D.A. Thomas, R.D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behaviour. Cem. Concr. Res. 33(6), 807–814 (2003)

    Article  CAS  Google Scholar 

  54. M. Zbik, R.S.C. Smart, Nanomorphology of Kaolinites: Comparative SEM and AFM studies. Clays Clay Miner. 46, 153–160 (1998)

    Article  CAS  Google Scholar 

  55. N.Y. Mostafa, Q. Mohsen, S.A.S. El-Hemaly, S.A. El-Korashy, P.W. Brown, High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cem. Concr. Compos. 32(5), 386–391 (2010)

    Article  CAS  Google Scholar 

  56. J.I. Tobón, J.J. Payá, M.V. Borrachero, O.J. Restrepo, Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr. Build. Mater. 36, 736–742 (2012)

    Article  Google Scholar 

  57. R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 41(1), 113–122 (2011)

    Article  CAS  Google Scholar 

  58. R. Hamid, K.M. Yusof, M.F.M. Zain, A combined ultrasound method applied to high performance concrete with silica fume. Constr. Build. Mater. 24(1), 94–98 (2010)

    Article  Google Scholar 

  59. L. Hui, X. Hui-gang, Y. Jie, O. Jinping, Microstructure of cement mortar with nano-particles. Compos. B Eng. 35(2), 185–189 (2004)

    Article  Google Scholar 

  60. M.S. Fartini, M.S. Abdul Majid, M. Afendi, R. Daud, A. Mohamad, Effect of nano-clay and their dispersion techniques on compressive properties of unsaturated polyester resin. Appl. Mech. Mater. 554, 27–31 (2014)

    Article  Google Scholar 

  61. S. Diamond, The microstructure of cement paste and concrete––a visual primer. Cement Concr. Compos. 26(8), 919–933 (2004)

    Article  CAS  Google Scholar 

  62. H. Yazıcı, The effect of curing conditions on compressive strength of ultra-high strength concrete with high volume mineral admixtures. Build. Environ. 42(5), 2083–2089 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhd Norhasri Muhd Sidek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 5th Symposium on Damage Mechanism in Materials and Structures (SDMMS 20–21), held March 8–9, 2021 in Penang, Malaysia and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosseli, S.R., Sidek, M.N.M., Saman, H.M. et al. Ultra High-Performance Concrete as Alternative Repair Method: A Review. J Fail. Anal. and Preven. 21, 2072–2080 (2021). https://doi.org/10.1007/s11668-021-01296-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01296-3

Keywords

Navigation