Skip to main content

Durability Assessment of Automobile Suspension Lower Arm Under Random Road Loads in Time-Frequency Domain


This study aims to investigate the characteristic of the random strain load signal in the time domain to predict durability of the lower arm. Cyclic loading on the suspension arm of vehicles leads to fatigue damage. The suspension arm is subjected to random variable amplitude loading due to different road conditions. Strain load signal data from a previous experiment are used for the analysis, and statistical parameters from the signal, such as mean, standard deviation, root-mean-square, kurtosis, skewness are extracted in time domains, while the power spectrum density in frequency domains. The fatigue life of three different roads was predicted using Coffin–Manson (CM), Morrow and Smith–Watson–Topper (SWT) strain-life models. Results showed the strain life of the lower arm ranges from 4.47 × 106 cycles/block to 8.8 × 109 cycles/block, 2.58 × 106 cycles/block to 3.18 × 1010 cycles/block, and 2.21 × 106 cycles/block to 5.06 × 1010 cycles/block for Coffin–Manson, Morrow and Smith–Watson–Topper model, respectively. Hence, the fatigue life of lower arm can be modeled using the mean stress effects due to compression and tension for various road condition based on the statistical properties of the strain signal i.e., kurtosis and root-mean-square value.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    V. Anes, J. Caxias, M. Freitas, L. Reis, Fatigue damage assessment under random and variable amplitude multiaxial loading conditions in structural steels. Int. J. Fatigue. 100, 591–601 (2016)

    Article  Google Scholar 

  2. 2.

    X. Hu, T. Bui, J. Wang, W. Yao, L.H.T. Ton, I.V. Singh, S. Tanaka, A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading. J. Theor. Appl. Mech. A Solids. 65, 79–90 (2017)

    Google Scholar 

  3. 3.

    A. Aeran, S.C. Siriwardane, O. Mikkelsen, I. Langen, A new nonlinear fatigue damage model based only on S-N Curve parameters. Int. J. Fatigue. 103, 327–341 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    K. Rege, D.G. Pavlou, A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue. 98, 234–246 (2017)

    Article  Google Scholar 

  5. 5.

    S. Abdullah, Y.S. Kong, M.Z. Omar, S.M. Haris, D. Schramm, Generation of artificial road profile for automobile spring durability analysis. J. Kejuruter. 30(2), 123–128 (2018)

    Article  Google Scholar 

  6. 6.

    M. Springer, H.E. Pettermann, Fatigue Life predictions of metal structures based on a low-cycle, multiaxial fatigue damage model. Int. J. Fatigue. 116, 355–365 (2018)

    Article  Google Scholar 

  7. 7.

    Y. Liu, F. Chen, N. Lu, L. Wang, B. Wang, Fatigue performance of rib-to-deck double-side welded joints in orthotropic steel decks. Eng. Fail. Anal. 105, 127–142 (2019)

    Article  Google Scholar 

  8. 8.

    Z. Yuan, H. Ma, Y. Lu, S. Zhu, T. Hong, The application of load identification model on the weld line fatigue life assessment for a wheel loader boom. Eng. Fail. Anal. 104, 898–910 (2019)

    Article  Google Scholar 

  9. 9.

    M. Algarni, Y. Choi, Y. Bai, A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718. Int. J. Fatigue. 96, 162–177 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Lu, P. Xiang, P. Dong, X. Zhang, J. Zeng, Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames. Eng. Fail. Anal. 89, 222–241 (2018)

    Article  Google Scholar 

  11. 11.

    C.S. Horas, G. Alencar, A.M. Jesus, R. Calçada, Development of an efficient approach for fatigue crack initiation and propagation analysis of bridge critical details using the modal superposition technique. Eng. Fail. Anal. 89, 118–137 (2018)

    Article  Google Scholar 

  12. 12.

    C. Lu, J. Melendez, J.M. Martínez, A universally applicable multiaxial fatigue criterion in 2D Cyclic Loading. Int. J. Fatigue. 110, 95–104 (2018)

    Article  Google Scholar 

  13. 13.

    M. Kepka, M.K. Kepka Jr, Deterministic and probabilistic fatigue life calculations of a damaged welded joint in the construction of the trolleybus rear axle. Eng. Fail. Anal. 93, 257–267 (2018)

    Article  Google Scholar 

  14. 14.

    E. Risaliti, T. Tamarozzi, M. Vermaut, B. Cornelis, W. Desmet, Multibody model based estimation of multiple loads and strain field on a vehicle suspension system. Mech. Syst. Signal Process. 123, 1–25 (2019)

    Article  Google Scholar 

  15. 15.

    B.J. Wang, Q. Li, Z.S. Ren, S.G. Sun, Improving the fatigue reliability of metro vehicle bogie frame based on load spectrum. Int. J. Fatigue. 132, 105389 (2019)

    Article  Google Scholar 

  16. 16.

    L. Abdullah, S.S. KaramSingh, A.H. Azman, S. Abdullah, A.K.A. MohdIhsan, Y.S. Kong, Fatigue life-based reliability assessment of a heavy vehicle leaf spring. Int. J. Struct. Integr. 10(5), 726–736 (2019)

    Article  Google Scholar 

  17. 17.

    Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs. Mech. Syst. Signal Process. 118, 675–695 (2019)

    Article  Google Scholar 

  18. 18.

    K. Reza, G.H. Farrahi, M. Shariyat, M.T. Ahmadian, Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input r non-proportional 3D stress components. Eng. Fail. Anal. 90, 534–553 (2018)

    Article  Google Scholar 

  19. 19.

    L. Capponi, M. Cesnik, J. Slavic, F. Cianetti, M. Boltezar, Non-stationarity index in vibration fatigue: theoretical and experimental research. Int. J. Fatigue. 104, 221–230 (2017)

    Article  Google Scholar 

  20. 20.

    M. Mahmud, S. Abdullah, A. Ariffin, Determining the behavior of fatigue strain histories of vehicle coil springs by using statistical inferences. Appl. Mech. Mater. 786, 409–414 (2015)

    Article  Google Scholar 

  21. 21.

    Y. Zhou, J. Tao, Theoretical and numerical investigation of stress mode shapes in multi-axial random fatigue. Mech. Syst. Signal Process. 127, 499–512 (2019)

    Article  Google Scholar 

  22. 22.

    A.A.A. Rahim, S. Abdullah, S.S.K. Singh, M.Z. Nuawi, Relationship between time domain and frequency domain strain signal—application to real data. J. Mech. Eng. 5(6), 178–191 (2018)

    Google Scholar 

  23. 23.

    Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, T. Bruckmann, Mission profiling of road data measurement for coil spring fatigue life. Meas. J. Int. Meas. Confed. 107, 99–110 (2017)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. S. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 5th Symposium on Damage Mechanism in Materials and Structures (SDMMS 20–21), held March 8–9, 2021 in Penang, Malaysia and has been expanded from the original presentation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamzi, N.M., Singh, S.S.K., Abdullah, S. et al. Durability Assessment of Automobile Suspension Lower Arm Under Random Road Loads in Time-Frequency Domain. J Fail. Anal. and Preven. (2021).

Download citation


  • Durability analysis
  • Variable amplitude loading
  • Lower suspension arm
  • Power spectral density