Skip to main content
Log in

Effect of Precipitation Hardening Treatment on Corrosion Behavior and Anodic Efficiency of Sacrificial Anode Produced from Recycled Al–Zn–Mg Alloy

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this work, Al–Zn–Mg sacrificial anode was developed from recycled aluminum and zinc. Characterization of the alloy using XRD, TEM and optical microscopy was conducted. Also, the influence of precipitation hardening time on the performance of the sacrificial anodes in seawater was investigated. The results indicated that the formation of both stable and metastable MgZn2 phase during precipitation hardening process has a significant effect on the corrosion behavior of the alloy. The high anodic efficiency of the alloy was attributed to the formation of the stable MgZn2 (η-phase) within the aluminum matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Yoganjaneyulu, K. Anand Babu, S. Vigneshwaran, C.S. Narayanan, Microstructure and mechanical properties of cryorolled Al–6Zn–3Mg–2Cu–0.5Sc alloy. Mater. Lett. 255, 3–6 (2019)

    Article  Google Scholar 

  2. A. Muazu, Y.S. Aliyu, M. Abdulwahab, A.P. Idowu Popoola, Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment. J. Mar. Sci. Appl. 15(2), 208–213 (2016)

    Article  Google Scholar 

  3. F.Q. Ran, L.H. Chai, K.Y. Gao, Z.R. Nie, Z.Y. Chen, Influence of various aging treatments on microstructure, strength and corrosion behaviour of high Zn content Al–Zn–Mg–Cu alloy. Corros. Eng. Sci. Technol. 49(8), 712–718 (2014)

    Article  CAS  Google Scholar 

  4. A. Naimi, H. Yousfi, M. Trari, Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075–T6 aluminum alloy1. Prot. Met. 48(5), 557–562 (2012)

    CAS  Google Scholar 

  5. E. McCafferty, P.M. Natishan, G.K. Hubler, Pitting behavior of aluminum Ion implanted with nitrogen. Corros. 53(7), 556–561 (1997)

    Article  CAS  Google Scholar 

  6. ASM Int USA. Corrosion of aluminum and aluminum alloys. (1999)

  7. W.M. Carroll, C.B. Breslin, Stability of passive films formed on aluminium in aqueous halide solutions. Br. Corros. J. 26(4), 255–259 (1991)

    Article  CAS  Google Scholar 

  8. W.C. Moshier, G.D. Davis, T.L. Fritz, B.J. Rees, B.A. Shaw, The influence of tungsten alloying additions on the passivity of aluminum B. J Electrochem. Soc. 138(11), 3288–3295 (1991)

    Article  Google Scholar 

  9. V.S. Sinyavskii, V.D. Kalinin, Marine corrosion and protection of aluminum alloys according to their composition and structure. Prot. Met. 41(4), 317–328 (2005)

    Article  CAS  Google Scholar 

  10. R.T. Loto, Investigation of localized corrosionresistance of 4044 aluminium alloy in acid chloride and neutral chloride solutions. J. Fail. Anal. Prev. 18(4), 905–911 (2018)

    Article  Google Scholar 

  11. S.S. Khamis, M.A. Lajis, R.A.O. Albert, A sustainable direct recycling of aluminum chip (AA6061) in hot press forging employing response surface methodology. Procedia CIRP. 26, 477–481 (2015)

    Article  Google Scholar 

  12. V. Güley, N. Ben Khalifa, A.E. Tekkaya, Direct recycling of 1050 aluminum alloy scrap material mixed with 6060 aluminum alloy chips by hot extrusion. Int. J. Mater. Form. 3(SUPPL. 1), 853–856 (2010)

    Article  Google Scholar 

  13. S. Shamsudin, M.A. Lajis, Z.W. Zhong, Evolutionary in solid state recycling techniques of aluminium: a review. Procedia CIRP. 40, 256–261 (2016)

    Article  Google Scholar 

  14. M.M. El, A. Forcellese, T. Mancia, M. Simoncini, S. Spigarelli, A new methodology to analyze the functional and physical arch. Procedia CIRP. 79, 638–643 (2019)

    Article  Google Scholar 

  15. J. Ma, J. Wen, Corrosion analysis of Al–Zn–In–Mg–Ti–Mn sacrificial anode alloy. J. Alloys Compd. 496(1), 110–115 (2010)

    Article  CAS  Google Scholar 

  16. J. Ma, J. Wen, X. Li, S. Zhao, Y. Yan, Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes. Rare Met. 28(2), 187–192 (2009)

    Article  CAS  Google Scholar 

  17. H. Ezuber, A. El-Houd, F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater. Mater. Des. 29(4), 801–805 (2008)

    Article  CAS  Google Scholar 

  18. G.T.T. Zhu, Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal. Corros. Eng. Sci. Technol. 46(4), 458–463 (2011)

    Article  Google Scholar 

  19. A. Chemin, D. Marques, L. Bisanha, A. de Motheo, J, Bose Filho WW, Ruchert COF., , Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys. Mater Des. 53, 118–123 (2014)

    Article  CAS  Google Scholar 

  20. K. Zhou, B. Wang, Y. Zhao, J. Liu, Corrosion and electrochemical behaviors of7A09 Al−Zn−Mg−Cu alloy in chloride aqueous solution. Trans. Nonferr. Met. Soc. China. 25(8), 2509–2515 (2015)

    Article  CAS  Google Scholar 

  21. D. Ferdian, Y. Pratesa, I. Togina, I. Adelia, Development of Al-Zn-Cu alloy for low voltage aluminum sacrificial anode. Procedia Eng. 184, 418–422 (2017)

    Article  CAS  Google Scholar 

  22. A. Kazeem, N.A. Badarulzaman, W. Fahmin, F. Wan, Relating fractographic analysis to yield strength of novel X7475 (Al–Zn–Mg-Cu) alloys produced by recycling aluminium beverage cans. Mater Lett. 7475, 127067 (2019)

    Google Scholar 

  23. ASM Met Handbook. Materials, properties and selection: nonferrous alloys and special-purpose., Vol 02. 1997;2.

  24. J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys. Philos. Magaz. 90(24), 3355–3374 (2010)

    Article  CAS  Google Scholar 

  25. K. Gopala Krishna, K. Sivaprasad, K. Venkateswarlu, K.C. Hari Kumar, Microstructural evolution and aging behavior of cryorolled Al–4Zn–2Mg alloy. Mater Sci Eng A. 535, 129–135 (2012)

    Article  CAS  Google Scholar 

  26. L.I. Bo, Q.L. Pan, C.P. Chen, Z.M. Yin, Effect of aging time on precipitation behavior, mechanical and corrosion properties of a novel Al–Zn–Mg–Sc–Zr alloy. Trans. Nonferr. Metals Soc. China. 26(9), 2263–2275 (2016)

    Article  Google Scholar 

  27. M. Abubakar, M. Usman, Influence of ageing time on mechanical properties and Weibull probability distribution of tensile strength of ternary Al–Zn–Mg alloy produced from aluminium and zinc scrap. Trans. Indian Inst. Met. 73(7), 1827–1836 (2020)

    Article  CAS  Google Scholar 

  28. M.A. Jingling, W. Jiuba, L.I. Gengxin, X.V. Chunhua, The corrosion behaviour of Al–Zn–In–Mg–Ti alloy in NaCl solution. Corros. Sci. 52(2), 534–539 (2010)

    Article  Google Scholar 

  29. J. Wen, J. He, X. Lu, Influence of silicon on the corrosion behaviour of Al–Zn–In–Mg–Ti sacrificial anode. Corros. Sci. 53(11), 3861–3865 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Special thanks go to Staff of materials science laboratory of Bayero university kano, Nigeria and materials science and engineering laboratory, Ahmadu Bello Univeristy Zaria, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muazu Abubakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, M., Onimisi, M.A. Effect of Precipitation Hardening Treatment on Corrosion Behavior and Anodic Efficiency of Sacrificial Anode Produced from Recycled Al–Zn–Mg Alloy. J Fail. Anal. and Preven. 21, 1212–1219 (2021). https://doi.org/10.1007/s11668-021-01150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-021-01150-6

Keywords

Navigation