Investigation of Anticorrosion and Mechanical Properties of Azole Functionalized Graphene Oxide Encapsulated Epoxy Coatings on Mild Steel

Abstract

Improvement of the corrosion protection properties of epoxy coatings on mild steel has been carried out by incorporating the imidazole modified graphene oxide (GO). Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the graphene oxide and functionalized graphene oxide (fGO). The protective performance of the functionalized GO with epoxy-fGO composite coating against corrosion was studied by electrochemical techniques and pull off adhesion test. The electrochemical impedance spectroscopic measurements showed high film resistance, charge transfer resistance with low capacitance for the epoxy-fGO coatings compared to neat epoxy coatings. SECM analysis showed less current distribution (0.5–2.3 I/nA) for fGO-grafted composite coatings compared to neat epoxy coatings (2–10 I/nA). The surface morphological analysis of epoxy-fGO composite coatings was done by field emission scanning electron microscopy with energy-dispersive X-ray analysis and X-ray diffraction (FE-SEM/EDX). Mechanical properties of the coatings were also found to be improved in the presence of modified GO nanoparticles in adhesive measurement. Thus, the epoxy-fGO coatings can enhance the adhesion strength and corrosion protection performance on mild steel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    A.H. Kadhum, A.B. Mohamad, L.A. Hammed, A.A. Al-Amiery, N.H. San, A.Y. Musa, Inhibition of mild steel corrosion in hydrochloric acid solution by new coumarin. Materials 7(6), 4335–4348 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    S. Singh, S. Samanta, A.K. Das, R.S. Rashmi, Hydrophobic reduced graphene oxide-based Ni coating for improved tribological application. J. Mater. Eng. Perform. 28, 3704–3713 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    C.N. Adak, S. Chhetri, N.H. Kim, C.N. Murmu, P. Samanta, T. Kuila, Static and dynamic mechanical properties of graphene oxide-incorporated woven carbon fiber/epoxy composite. J. Mater. Eng. Perform. 27, 1138–1147 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    A. Grinou, Y.S. Yun, H.-J. Jin, Polyaniline nanofiber-coated polystyrene/graphene oxide core-shell microsphere composites. Macromol. Res. 20, 84–92 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    S.A. Ataie, A. Zakeri, Improving tribological properties of (Zn–Ni)/nano Al2O3 composite coatings produced by ultrasonic assisted pulse plating. J. Alloys Compd. 674, 315–322 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    S. Pourhashem, A. Rashidi, M. RezaVaezi, Z. Yousefian, E. Ghasemy, The effect of polycrystalline graphene on corrosion protection performance of solvent based epoxy coatings: experimental and DFT studies. J. Alloys Compd. 764, 530–539 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    C.B.P. Kumar, K.N. Mohana, H.B. Muralidhara, Electrochemical and thermodynamic studies to evaluate the inhibition effect of synthesized piperidine derivatives on the corrosion of mild steel in acidic medium. Ionics 21(1), 263–281 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    M. Hedayatian, K. Vahedi, A. Nezamabadi, A. Momeni, Microstructural and mechanical behavior of Al6061–graphene oxide composites. Method Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00361-9

    Article  Google Scholar 

  9. 9.

    A. Ghanbari, M.M. Attar, A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. J. Ind. Eng. Chem. 23, 145–153 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    B. Ramezanzadeh, E. Rasi, M. Mahdavian, Studying various mixtures of 3- aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS) silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating. Int. J. Adhes. Adhes. 63, 166–176 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    F. Ren, G. Zhu, P. Ren, Y. Wang, X. Cui, In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Appl. Surf. Sci. 316, 549–557 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    J.R. Xavier, Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 260, 114639 (2020). https://doi.org/10.1016/j.mseb.2020.114639

    CAS  Article  Google Scholar 

  13. 13.

    J.R. Xavier, R. Nallaiyan, Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. J. Fail. Anal. Prev. 16(6), 1082–1091 (2016)

    Article  Google Scholar 

  14. 14.

    P. Nyanor, O. El-Kady, H.M. Yehia, A.S. Hamada, K. Nakamura, M.A. Hassan, Effect of carbon nanotube (CNT) content on the hardness, wear resistance and thermal expansion of in situ reduced graphene oxide (rGO)-reinforced aluminum matrix composites. Methods Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00445-6

    Article  Google Scholar 

  15. 15.

    J.R. Xavier, T. Nishimura, Evaluation of the corrosion protection performance of epoxy coatings containing Mg nanoparticle on carbon steel in 0.1 M NaCl solution by SECM and EIS techniques. J. Coat. Technol. Res. 14, 395–406 (2017). https://doi.org/10.1007/s11998-016-9856-7

    CAS  Article  Google Scholar 

  16. 16.

    M.E. Khan, M. MansoobKhan, M.H. Cho, Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J. Chem. 39, 8121–8129 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    N.H. Othman, W.Z.N. Yahya, M.C. Ismail, M. Mustapha, Z.K. Koi, Highly dispersed graphene oxide–zinc oxide nanohybrids in epoxy coating with improved water barrier properties and corrosion resistance. J. Coat. Technol. Res. 17, 101–114 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    X.-J. Shen, X.-Q. Pei, S.-Y. Fu, K. Friedrich, Significantly modified tribological performance of epoxy composites at very low graphene oxide content. Polymer 54, 1234–1242 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    O.J. Yoon, I.Y. Sohn, D.J. Kim, N.E. Lee, Enhancement of thermomechanical properties of poly(D, L-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromol. Res. 20, 789–794 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, M.H. MohamadzadehMoghadam, Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 103, 283–304 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    Z. Yu, Y. Ma, Y. He, L. Liang, L. Lv, X. Ran, Y. Pan, Z. Luo, Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surf. Coat. Technol. 276, 471–478 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    M.A. Deyab, R. Ouarsal, A.M. Al-Sabagh, M. Lachkar, B. El-Bali, Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogen phosphate compound. Prog. Org. Coat. 107, 37–42 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    S.R. Nayak, K.N.S. Mohana, Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel. Surf. Interf. 11, 63–73 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    L. Yu, Y. Lv, H. Ma, Y. Di, He, Covalent modification of graphene oxide by metronidazole or reinforce anti-corrosion of epoxy coatings. RSC Adv. 6, 18217–18226 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    J.J. Santana, J. González-Guzmán, L. Fernández-Mérida, S. González, RM Souto (2010) Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. Electrochim. Acta 55(15), 4488–4494 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    J.R. Xavier, Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corros. Method Mater. 65(1), 38–45 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Lin, J. Jin, M. Song, Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 21(10), 3455–34561 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    L.M. Veca, F. Lu, M.J. Meziani, L. Cao, P. Zhang, G. Qi, L. Qu, M. Shrestha, Y.P. Sun, Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 18, 2565–2567 (2009)

    Article  Google Scholar 

  30. 30.

    A. Cordoba, M. Satué, M. Gomez-Florit, M. Hierro-Oliva, C. Petzold, S.P. Lyngstadaas, M.L. González-Martín, M. Monjo, J.M. Ramis, Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv. Healthcare Mater. 11, 540–549 (2015)

    Article  Google Scholar 

  31. 31.

    Y. Xue, Y. Liu, L. Fan, Q. Jia, H. Chen, L. Dai, Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. 3, 1607–1612 (2012)

    CAS  Google Scholar 

  32. 32.

    J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    S.P. Vinodhini, R. Manonmani, B. Venkatachalapathy, T.M. Sridhar, Interlayer TiO2–HAP composite layer for biomedical applications. RSC Adv. 6(67), 62344–62355 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, M. Mahdavian, A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros. Sci. 133, 358–373 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    N. Parhizkar, T. Shahrabi, B. Ramezanzadeh, A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film. Corros. Sci. 123, 55–75 (2017)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinodhini, S.P., Xavier, J.R. Investigation of Anticorrosion and Mechanical Properties of Azole Functionalized Graphene Oxide Encapsulated Epoxy Coatings on Mild Steel. J Fail. Anal. and Preven. (2021). https://doi.org/10.1007/s11668-020-01104-4

Download citation

Keywords

  • Epoxy resin
  • Imidazole
  • Graphene oxide
  • Surface modification
  • Anticorrosion performance