Skip to main content
Log in

Finite Element Modeling of Dynamic Failure of Composite Laminates Under Transverse Tensile Loading

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this paper, the dynamic failure of unidirectional E-glass/epoxy composite laminates under transverse tensile loading was investigated using finite element numerical simulation. The 3D Hashin failure criteria were used to estimate the fiber and matrix damage initiation. The composite modulus and failure strain considered the strain rate effects. The cohesive behavior was applied to describe the delamination failure between different composite layers. This model was implemented in the finite element code (Abaqus/Explicit) by a user-defined material subroutine. The numerical results illustrate that the prediction of damage surface, transverse modulus, tensile strength, and failure strain is in good agreement with published experimental results. Then, the delamination of each interface at strain rate of 45.48 s−1 was studied. Finally, the effects of the strain rate on the transverse modulus and tensile failure strain at different strain rates were output, and the strain rate dependence of modulus and failure strain was discussed and investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\sigma_{ij}\) (i, j = 1, 2, 3):

Stress tensor

\(\varepsilon_{ij}\) (i, j = 1, 2, 3):

Strain tensor

C ij (i, j = 1–6):

Elastic constant

E ii (i = 1, 2, 3):

Young’s modulus

G ij (i, j = 1, 2, 3, i ≠ j):

Shear modulus

\(\nu_{ij}\) :

(i, j = 1, 2, 3, i ≠ j) Poisson’s ratio

\(\varepsilon_{11}^{T}\) :

Tensile failure stain in the fiber direction

\(\varepsilon_{11}^{\text{C}}\) :

Compressive failure strain in the fiber direction

\(\varepsilon_{22}^{\text{T}}\) :

Tensile failure strain in the transverse direction

\(\varepsilon_{22}^{\text{c}}\) :

Compressive failure strain in the transverse direction

\(\varepsilon_{ij}^{\text{f}}\) (i, j = 1, 2, 3, i ≠ j):

Shear failure strain

\(f_{\text{ft}}\), \(f_{\text{fc}}\), \(f_{\text{mt}}\), \(f_{\text{mc}}\) :

Damage coefficient

E RT :

Modulus considering strain rate effects

\(S_{\text{RT}}\) :

Failure strain considering strain rate effects

\(S_{0}\) :

Static failure strain

\(\dot{\varepsilon }_{0}\) :

Reference strain rates

\(\dot{\varepsilon }_{{}}\) :

Strain rates

a S, b S, c S :

Material parameters related to strain rate dependence of failure strain

a E, b E :

Material parameters related to strain rate dependence of modulus

t :

Cohesive traction stress vector

\(\bf \delta\) :

Separation displacement vector

\(G_{\text{n}}^{\text{c}}\), \(G_{\text{s}}^{\text{c}}\), \(G_{\text{t}}^{\text{c}}\) :

Critical fracture energies

G n, G s, G t :

Fracture energies

References

  1. A. Kurşun, M. Şenel, H.M. Enginsoy, Experimental and numerical analysis of low velocity impact on a preloaded composite plate. Adv. Eng. Softw. 90, 41–52 (2015)

    Article  Google Scholar 

  2. T. Seshaiah, K. Vijayakumarreddy, Effect of hybrid Mwcnts/graphene on tensile properties of reinforced unidirectional e-glass/epoxy composite, in IOP Conference Series: Materials Science and Engineering, vol. 377 (2018)

  3. A. Delbariani-Nejad, A. Farrokhabadi, S.R. Jafari, An energy based approach for reliability analysis of delamination growth under Mode I, Mode II and Mixed Mode I/II Loading in composite laminates. Int. J. Mech. Sci. 145, 287–298 (2018)

    Article  Google Scholar 

  4. J.L. Tsai, J.C. Kuo, Strain rate effect on out of plane shear strength of fiber composites. Key Eng. Mater. 345–346, 725–728 (2009)

    Google Scholar 

  5. M.M. Shokrieh, M.J. Omidi, Investigation of strain rate effects on in-plane shear properties of glass/epoxy composites. Compos. Struct. 91, 95–102 (2009)

    Article  Google Scholar 

  6. S. Acharya, D.K. Mondal, K.S. Ghosh, A.K. Mukhopadhyay, Mechanical behaviour of glass fibre reinforced composite at varying strain rates. Mater. Res. Express 4, 576–591 (2017)

    Article  Google Scholar 

  7. H. Al-Zubaidy, R. Al-Mahaidi, X.L. Zhao, Finite element modelling of CFRP/steel double strap joints subjected to dynamic tensile loadings. Compos. Struct. 99, 48–61 (2013)

    Article  Google Scholar 

  8. Z. Jing, C. Tian, J. Wu, W. Wang, J. Zhao, J. Sun, Strain rate effects on dynamic tensile failure of composite laminated plates with holes. J. Nanjing Univ. Aeronaut. Astronaut. 51, 55–62 (2019)

    Google Scholar 

  9. M. Sato, S. Shirai, J. Koyanagi, Y. Ishida, Y. Kogo, Numerical simulation for strain rate and temperature dependence of transverse tensile failure of unidirectional carbon fiber-reinforced plastics. J. Compos. Mater. 53, 4305–4312 (2019)

    Article  Google Scholar 

  10. M.M. Shokrieh, R. Mosalmani, M.J. Omidi, A strain-rate dependent micromechanical constitutive model for glass/epoxy composites. Compos. Struct. 121, 37–45 (2015)

    Article  Google Scholar 

  11. H.L. Gowtham, J.R. Pothnis, G. Ravikumar, N.K. Naik, High strain rate in-plane shear behavior of composites. Polym. Test. 32, 1334–1341 (2013)

    Article  CAS  Google Scholar 

  12. Y. Wang, Y. Zhou, Y. Xia, S. Jeelani, Statistical analysis on high strain rate tensile strength of T700 carbon fiber, in ASME International Mechanical Engineering Congress & Exposition Proceedings 10 PART A, pp. 557–560 (2008)

  13. M. Castres, J. Berthe, E. Deletombe, M. Brieu, Experimental evaluation of the elastic limit of carbon-fibre reinforced epoxy composites under a large range of strain rate and temperature conditions. Strain 53, 1–10 (2017)

    Article  Google Scholar 

  14. X. Li, D. Ma, H. Liu, W. Tan, X. Gong, C. Zhang, Y. Li, Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Compos. Struct. 207, 727–739 (2019)

    Article  Google Scholar 

  15. H. Singh, K.K. Namala, P. Mahajan, A damage evolution study of E-glass/epoxy composite under low velocity impact. Compos. Part B Eng. 76, 235–248 (2015)

    Article  CAS  Google Scholar 

  16. Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  17. Z. Weiyao, X. Xiwu, Finite element simulation of low velocity impact damage on composite laminates. Acta Mater. Compos. Sin. 27, 200–207 (2010). (in Chinese)

    Google Scholar 

  18. E.A. Duodu, J. Gu, W. Ding, Z. Shang, S. Tang, Simulation of composite laminate with cohesive interface elements under low-velocity impact loading. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 127–138 (2019)

    Article  Google Scholar 

  19. C. Zhang, J.L. Curiel-Sosa, E.A. Duodu, Finite element analysis of the damage mechanism of 3D Braided composites under high-velocity impact. J. Mater. Sci. 52, 4658–4674 (2017)

    Article  CAS  Google Scholar 

  20. L. Zhu, B. Sun, H. Hu, B. Gu, Ballistic impact damage of biaxial multilayer knitted composite. J. Compos. Mater. 46, 527–547 (2012)

    Article  Google Scholar 

  21. E. Sitnikova, Z.W. Guan, G.K. Schleyer, W.J. Cantwell, Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading. Int. J. Solids Struct. 51, 3135–3146 (2014)

    Article  CAS  Google Scholar 

  22. M.A. McCarthy, J.R. Xiao, N. Petrinic, A. Kamoulakos, V. Melito, Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—part 1: material modelling. Appl. Compos. Mater. 11, 295–315 (2004)

    Article  CAS  Google Scholar 

  23. M.M. Shokrieh, M.J. Omidi, Tension behavior of unidirectional glass/epoxy composites under different strain rates. Compos. Struct. 88, 595–601 (2009)

    Article  Google Scholar 

  24. T. Wagner, S. Heimbs, F. Franke, U. Burger, P. Middendorf, Experimental and numerical assessment of aerospace grade composites based on high-velocity impact experiments. Compos. Struct. 204, 142–152 (2018)

    Article  Google Scholar 

  25. A.P. Sharma, S.H. Khan, V. Parameswaran, Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates. Compos. Part B Eng. 125, 259–274 (2017)

    Article  CAS  Google Scholar 

  26. S. Long, X. Yao, X. Zhang, Delamination prediction in composite laminates under low-velocity impact. Compos. Struct. 132, 290–298 (2015)

    Article  Google Scholar 

  27. P. Tran, A. Ghazlan, T.D. Ngo, Blast resistance of hybrid elastomeric composite panels. Appl. Mech. Mater. 846, 458–463 (2016)

    Article  Google Scholar 

  28. M.M. Shokrieh, M.J. Omidi, Investigating the transverse behavior of glass-epoxy composites under intermediate strain rates. Compos. Struct. 93, 690–696 (2011)

    Article  Google Scholar 

  29. M.M. Shokrieh, M.J. Omidi, Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates. Compos. Struct. 89, 517–523 (2009)

    Article  Google Scholar 

  30. K.K. Namala, P. Mahajan, N. Bhatnagar, Digital image correlation of low-velocity impact on a glass/epoxy composite. Int. J. Comput. Methods Eng. Sci. Mech. 15, 203–217 (2014)

    Article  CAS  Google Scholar 

  31. ABAQUS Documentation, Version 6. 14, Dassault Systems Simulia Corp. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T. Finite Element Modeling of Dynamic Failure of Composite Laminates Under Transverse Tensile Loading. J Fail. Anal. and Preven. 21, 228–240 (2021). https://doi.org/10.1007/s11668-020-01053-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01053-y

Keywords

Navigation